M-eux Test

Test Automation using Visual Studio
User Guide

Abstract

This Getting Started Guide describes how to use M-eux Test for testing mobile applications using Visual
Studio. This document is intended for Quality Assurance (QA) engineers and testers who wish to get
acquainted with the functionalities of M-eux Test.

Part Number MT-UG-VS

Revision 3093, February 2014 0 Ja MO sO lUﬁ ons

© Copyright 2013 Jamo Solutions N.V. No parts of this document may be reproduced, stored in, or
introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written permission of

Jamo Solutions.

This document is provided for informational purposes only. Jamo Solutions makes no warranties as to
the information in this document. The information contained herein is subject to change without notice.

All trademarks are the properties of their respective owners

M-eux Test: Visual Studio User Guide

Contents
L0To T 1 7= 01 £ O TP PPPR PP 3
(@ 0T o) {1 ot R o o 1o (1ot [o PP 6
1.1, M-EUX TEST OVEIVIEW.....eeeiiiiiiieeeiiitee ettt e ettt e sttt e s st e e st e e e s e e e s s b e e e s e anre e e s enreeeeemneeeseanreeesennrenas 6
1.2. Where t0 80 fromM NEIE ..ccii et e e s e e e s sbe e e s s rareeeesnreeas 7
Chapter 2: M-EUX TEST OVEIVIEWueiiiiiieeeiciiee e eettee e ettt e e eetee e e e eatee e e seateeeeesabaeeesanbeeeeesnsaeeeeassaeeeennseeeeennsenas 8
2.1. THe MODIIE AEVICE QBENT...eiiieiiee ettt e et e e e et e e e e e bte e e e ebteeeeebtaeeeeastaeeeenseneenannes 8
2.2. The device manager apPPliCAtiONooocciiie it e et e e e e bre e e s ebaa e e e erreeeeeanes 8
2.2.1. The CONNECLEA GEVICES. ...ceerutieeiiieiieeeiet ettt ettt e bttt e s bee e sabeesabeesbteesbeeesbbeesabeesneeesareens 8
2.2.2. The connected teStING tOOIS......ciiiiiiii i e e e sbee e e e sareeas 9
2.3. Visual Studio and the .Net FrameWork ..ot 9
Chapter 3: GEHING STArteU........uiii ettt e e et e e e e bt e e e e e bteeeesbeeeeeesaeeesenseseeeaseneanannes 10
N) - [T =Y BT 0D G T T P TSRO P PR 10
3.2. Creating @ M-EUX TEST SCIIPT ..uuiiiiiiiiiiiiieeee ettt e e e e s ettt et e e e s s s ssbrreeeeeessssssbrsaeeeessssssssrenneeeesssnnns 13
3.3. Creating @ M-euX TeSt WIM ROD SCIIPT ..ccciiiiiiiiiiiiiieeeeiiiiiiiittee e e s s siiirteeeeesssssirreeeeesssssssssenseeeesssnnes 15
B Y= Yole Y o o= T Yol o | APPSR 17
3.5, L8AIN GUI . e s e e e es 19
3.6. Programming @ SCript ManUAllYc..eeeeiiiiii et e e e are e e s e e e e e e eareeas 20
B0 L. INEEIIISENSE ..ttt ettt b e st at e sttt e b e bt e be e she e st e et e beenheesaeeeas 20
3.6.2. Change the name of a ScriptObject inside the UserScript/ObjectPoolcccccvevveereeneennnnnns 20
AR @] oY [=Tot 4 e Yo Y PSRRI 22
3.7.1. The roOt SCriPtODJECESviiiiciiiee ittt ettt e e e e sbre e e s ebee e e e sbteeeesabtaeeesseaeeesnnes 22
3.7.2. The ScriptObJect hiErarChy ... e e e e e e re e ee s 24
K T Yol g o1 (O o J=Tot fl o o o =T o [P 25
3.7.4. Reuse an existing ObjectPool for another USerscript........cccccuveeeeciieeiecieeeeeciieeeecieeeeecveeee e 27
3.8 SAVING @ SCIIPT coeieieieeeeeeeeeeeeee e e e e s e e e e e e e e s s e s e s e s e s e s e s e sesasssesasasssnsesssssssssssassessssnnanananannes 32
3.9, REPIAYING @ SCHIPE ceiiiiiiii ittt et e e re e e et e e e et e e e e s abaeeesasbaeeeannbaeeeasbaeeeasseeesannseeas 32
3.10. DIiStrIDULE @ SCIIPL....uiiieiiiiie ettt e e e e et e e e e st e e e e ebaeeesabbaeeeennbaeeeenreeeeasseeesenssenas 34
3.11. Replaying @ distributed SCriptcceeeiiiiieee e e et e e e e e e aae e e e e e eeaas 35
3.12. MeuxExecuter Commandling OPLiONSccciiiiiiiee et e e e e e e e e e e e s enrraaeeeeeeeeaas 35
3.13. BAtCh @XECUTION «.eeiiiiiiiieieet ettt sttt et e b e sbe e st st s e b e b e s be e saeesaeeeabeebeesbeesnnenas 36

Page3

M-eux Test: Visual Studio User Guide

3.14. Results of a script, using the RESUIEMAaNagEr.....ccovcuviiiiiiiiiee et 36
3,05, LOZEING STAtOMENTS .ttt e e ettt e e e e e e st bt e e e e e e e e s tbe e e e e e e e e anbraaeeeeeeeanas 36
N T € o) o | Ny ool Y3l o o] o T<T o Y 2RSSR 37
3.17. LOBRUNSTATEMENTS PrO eI e e e e e e e e e e e e e 37
0 TR o ol= o o] o I T T P TP PP TP 37
3.18. 1. IMEUXEXCEPTION eeiiiiieiiiieeee ettt ettt e e ettt e e e e s s ettt e e e e e e s s asbeteeeeeessaannreaeeeens 37
3.19. Run one script from another SCrPt ...eui i e s ree e s 38
Chapter 4: AdVANCEA OPLiONS ...uiiiiiiiiee ittt e e s st e e e sbte e e e sbteeessbeeeessbeaeesssseneeesssseeessses 45
4.1. The MolistViewCE object in Windows Mobile Standard Editionccccccoveeieeieeiccciee e, 45
4.2. Testing .Net Compact Framework Applicationsccceeeeciieeieciiee e e 46
4.2.1. Automatic activation of the .Net Compact Framework Extended support.ccccccvvveererrennnn. 46
4.2.2. How to active the automatic .Net extended SUPPOIt?oovivciiiiiiiiiie e 46
4.2.3. Enabling extended support in @ NON-automMatic Way......ccceeevciieieiiiieeeciee e 48
7y B Y=Y -1 Y ol oY 4 1 Br=1 o] o] o - [[49
4.2.5. Overview extended funCtioNality.........coccuiiiieciiii it 50
4.2.6. Getting and Setting ProPertiescoccuiiiiiiei ettt e e e e sttree e e e e e e s rbaaaeee e e e e e esnnrnnes 51
4.2.7. Parameters and return VAlUESc.coouiriiiiiieiienieeereese ettt 52

Vi 0 BT o o To o =Y I olo) ol d o] £ URTP 53
Chapter 5: TroUblESNOOTINGviiiiciiiee e e e e e s st te e e e ebee e e e ebeeeeesnbeeeesaseeeeesnnes 55
5.1. The Add-in Meux VS Addin failed to load in VS 2010.coceeiiiiiiniieieeieeieeste e 55
Chapter 6: Using M-eux Test With Unit TSt PrOJECESccuuviiieiiiee ettt et e et e e e e e e eanes 56
6.1. Create YOUr UNIT TEST PrOJECT. ..ot e 56
6.2. Create YOUr UNIt TEST CIASS .uuiiiiiiiiiiiciiie ettt e s tee e e s ee e s et e e e e e abaeesenbaeeeennsenas 60
6.3. ReCOrd YOUN fIrst UNIT TSt ..iiiiiiiieieiiiie ettt et et e s tee e e s tb e e s et e e e s e abeeesenbeeeeennsenas 61
6.4. Converting a Unit Test into @ Performance TesSt.......cuuvieciiiiiiiiieeecee e e 62
6.5. Adding your unit tests to a performance test ProjECtc.uuieeccieeeeciiiee e e e 64
6.6. Run your tests cases from Microsoft Test Manager........cc.ueeeecieeeeciiiee et e e e 66
6.7. Run your tests cases from Microsoft Team Buildccccuvirieiiiiiiiciiiee e 66
Chapter 7: Using M-eux Test in any .NET ProOjJECEooiiiciiiii ittt et evan e e e 67
7.0, ASSEMBIIES ..ttt st e b e b s aee s ae e et e enbeenheesare e 67
7.2. Connect the .Net executable to the device MaNager......c.uevevciiie e e 67
7.3. Programming autOmMation STEPS c.coeeeeeei e e a e e e e e 68

Page 4

M-eux Test: Visual Studio User Guide

0 T8 O N 1 Y o Yol o o - LU PPN 68
7.3.2. AULOMALION METNOAS ...t sttt esbe e e saees 69
8 T8 T 0] o1 T=Tot o Yo H RPN 69

7.4. DeSCriptive PrOSIamMIMING cooeeeeeeeeeeeieeeee e e e e e e e e e s eeeeeeseaeseseaaaassseneanns 71

(O T oY (=T ot T U o1 =1 Y USSPt 73

Page5

M-eux Test: Visual Studio User Guide

Chapter 1: Introduction

This guide is the user’s guide for the Visual Studio part of ‘M-eux Test’. The product ‘M-eux Test’ uses
Microsoft’s Visual Studio to create and maintain automation scripts for testing against mobile devices.

In order to get used to the Visual Studio User Interface, please consult Microsoft’s provided help and
documentation resources. This guide will focus on the additional functionality in order to create test
cases against mobile devices.

We have made every attempt possible in making the instructions in this guide as clear as possible.
However, we recognize that we are unable to cover everything in a single guide. Should you require
further assistance, please do not hesitate to visit our www.jamosolutions.com website or to contact our
support team at support@jamosolutions.com.

1.1. M-eux Test overview

To test mobile applications using M-eux Test, you need three main components. The mobile device
hosts the application that you want to test. You use a Visual Studio in which you write and execute your
scripts. Finally, the M-eux Test Device Manager is the core of our application and acts as the gateway
between the mobile devices and scripting environment.

M-eux Test currently supports the following products:

e Mobile Device: Mobile devices can only connect to the device manager if the agent is installed
on the device. The device needs to be connected to the PC, on which Visual studio and the
device manager are installed, by a USB cable or a WIFI-connection.

e Device Manager: The device manager application manages the connection between the devices
and Eclipse.

e Visual Studio: version 2005, 2008, 2010, 2012 and 2013 are supported

QuickTest
Professional

Visual Studio

Eclipse

Add-in

Device Manager

M-eux test

Figure 1: M-eux Test Architecture

Page 6

http://www.jamosolutions.com/
mailto:support@jamosolutions.com

M-eux Test: Visual Studio User Guide

1.2. Where to go from here
If you want to further explore the features of M-eux Test, please visit our website at
www.jamosolutions.com for further information on the features of M-eux test.

Page7

http://www.jamosolutions.com/

M-eux Test: Visual Studio User Guide

Chapter 2: M-eux Test Overview

In order to test applications running on mobile devices, you need three components:

e The mobile device agent running on a mobile device or emulator connected with a USB cable or
WIFI to the PC. In case of a USB cable, the connection is managed by ActiveSync from Microsoft.

e The DeviceManager application. This application is running on the PC and connects the mobile
device with Visual Studio.

e Visual Studio for creating and maintaining the scripts.

2.1. The mobile device agent

Mobile devices can only connect to the device manager if the agent is installed on the device. The device
needs to be connected to the PC, on which Visual studio and the device manager are installed, by a USB
cable or a WIFI-connection.

2.2. The device manager application
The device manager application manages the connection between the devices and Eclipse.
The device manager application lists three tables:

- The connected devices
- The connected testing tools

2.2.1. The connected devices

File Tools Help

Connected Devices | Connected Testing tools I Network IP address |

Name Leam Gui Model Manufacturer OSVersion Connection Status

» O [e= Galaxy Nexus ‘ 422573038b:17 | Connected/USB_ADB

%
This table lists all connected devices. The first column displays the name of the device. This name is used

to identify the device. You have to make sure that if you connect multiple devices, that each device has
a unique name.

Page 8

M-eux Test: Visual Studio User Guide

2.2.2. The connected testing tools

File Tools Help

| Connected Devices | Connected Testing tools | Network IP address |

ToolStatus Name RecorderPort RecorderName Process

> _ Eclipse Addin 5580 EclipseRecorder

This table lists all connected testing tools to the device manager. The table will display the connected
Visual Studio session and its status. The status can be ‘recording, ‘idle’ or ‘replaying’.

See Appendix A for more Information about the device manager.

2.3. Visual Studio and the .Net Framework

Visual studio is a development environment for making desktop and web-applications. Multiple
programming languages are supported. The “M-eux Test”-extension focuses only on the C# .Net
programming language. The following sections give a brief overview of prerequisite knowledge for
making “M-eux Test”-scripts.

Please refer to Microsoft’s documentation for a complete overview:

http://msdn.microsoft.com/nl-be/library/52f3sw5c(en-us).aspx

M-eux Test do support Microsoft Visual Studio professional or later

Page9

http://msdn.microsoft.com/nl-be/library/52f3sw5c(en-us).aspx
http://fr.wikipedia.org/wiki/Microsoft_Visual_Studio_Express

M-eux Test: Visual Studio User Guide

Chapter 3: Getting Started

3.1. Starting M-eux Test

1. The device manager needs to be started before Visual Studio is started. If the device manager
program is not running, the M-eux Test package in Visual Studio cannot be activated.

2. Launch the Agent on your mobile device.

3. Start Visual Studio. From the tools menu select “Add-in Manager”.

M-eux Test Window Help

Package Browser

Package Load Analyzer

Guidance Package Manager

Attach to Process... Ctrl+Alt+P
Device Security Manager...

Connect to Device...

Device Emulator Manager...

Connect to Database...

Connect to Server...

mmﬁ%h&%m@ﬁﬁ

Code Snippets Manager... Ctrl+K, Ctrl+B

Choose Toolbox tems...

Add-in Manager...

L B [

The Add-in Manager Window will appear:

Add-in Manager .~
Available Add-ins Start... Command L...
[¥] M-eux V5 Addin O O
[JvMDebugger O]]

Check the M-eux VS Addin option. The M-eux Test Menu will be added to Visual Studio :

Page 10

M-eux Test: Visual Studio User Guide

‘g MyTestl 2 - Microsoft Visual Studic (Administrator)

File Edit View Project Build Debug Data Tools Window Help
iﬂ'_J'LjHﬂi # 53 0 - - = - [E Connect
i || &k & | 4
'~ UserScript.cs| Start Page |
A4 UserScript.UserScript

Cusing System:
El—'.lsing CbjectPoolUserScript;

Start Recording
Learn GLI

41

Quality Center
Quality Center Open Script
Quality Center Save Script

DEDEDEDE N B+

[N T % I]

Quality Center Save Script As

[1:Y

E| namespace UserScript
Troubleshooting:

If the M-eux Test menu does not get added please verify in Tools->Options->Environment->Add-
in /Macros Security if you have the “%VSMYDOCUMENTS%\Addins” path listed in Add-in File

Paths.
Options
4 Environment - [¥] Allow macros to run
General [¥] Allow Add-in compenents to load
Add-in/Macros Security [] Allow Add-in components to load from a URL
AutoRecover
Documents Add-in File Paths

Find and Replace

HALLUSERSDOCUMENTS % \Microsoft\MSEnvShared Addins
FALLUSERSPROFILE3:\Application Data\Microsoft\MSEnvShared\Addins
FAPPDATAR\Microsoft\MSEnvShared\Addins

HVSAPPDATANAddins

Fonts and Colors

m

» Help
Import and Export Settings
Internaticnal Settings

Keyboard
Startup C SVSMYDOCUMENTS36\Addins
Task List] —

Web Browser

Select “Connect” from the” M-eux Test Menu” to connect Visual Studio to the device manager.

M-eux Test | Window Help

| F¥| Connect
Bl | Start Recording
o Learn GUI

If the device manager was not yet running it will be started. You will see the Visual Studio Add-in
appear in the “Connected Testing Tools” tab of the device manager:

Page 11

M-eux Test: Visual Studio User Guide

File Tools Help
[Connected Devices | Connected Testing tools | Network IP address |
ToolStatus Name RecorderPort RecorderName Process
> _ Eclipse Addin 5580 EclipseRecorder

Once the tool is connected the “Connect” option will no longer be available in the “M-eux Test
Menu” until the device manager is closed.

Window Help

Bl | Start Recording
O Learn GUI

While you are using the tool, take care of the following limitations:

e Once the automatic start check box has been checked, the agent will start automatically the
next time the device is reset. If the agent is running automatically and there is a need to change
the connection details, for example the connected PC name, then the agent needs to be
stopped and started again. The agent window will open and the connection information can be
changed.

e To stop a running agent, one can use the ‘m-eux control panel’ application. Open the File
explorer on the device, navigate to the agent installation directory and select the ‘agentcp’
application. Following screen is displayed:

Page 12

M-eux Test: Visual Studio User Guide

- I"Agent Control Pan ,,,,, N m X

Status: Agent running

Version: 2.0.488 - tracing

Host: test

Conn. number: 0

Autom. startup: enabled

Refresh

e The window shows information about the agent: the running state, the version of the agent, the
name of the PC to which the agent connects, the connection number and if automatic startup is
enabled. This information is updated by selecting the left menu ‘Refresh’. Using the right menu
‘Menu’, the agent can be stopped or started.

3.2. Creating a M-eux Test script
Start the environment as described in the previous section.

1. Create a new project inside Visual Studio:
File > New - Project...

2. Inthe dialog select the template: Visual C# = ”M-eux Test”-Script

Page 13

M-eux Test: Visual Studio User Guide

g AL =2 —————— ==
| 1
I Templates NET Framework20 | [

V'SU;:_ ':: || 8 ASP.NET Web Application i

W'”b ows . ASP NET Web Service Application
el L

Srmart Device = || 2% Console Application
Office i 8 Windows Forms Control Library =
Database My Templates
Reporting € "M-eux Test WM ROD"-Seript
Teft_ - 0 "M-eux Test"-Script e

A template for a new "M-eux Test"-Script, including the ObjectPool.

I Marme: MyMewxProject
Location: ChTemp -
Solution MName: MyMeuxProject Create directory for solution

| ok || cancel |

3. Give the solution a Name and a Location and press OK
4. Specify a unigue name for the script.

"M-eux Test™-Script

Mame of the "M-ewx Test"-Script :

Note: it is very important to specify a uniqgue name for your script, this will ease both the sharing of
the ObjectPool between other scripts and calling one script from another.

5. A new Solution with 2 projects will appear:

a. ObjectPool: this project will contain all the objects that can be approached for
automation testing, together with their descriptions.

b. UserScript PC: represents the actual script which will contain the automation logic.
The project contains only two “.cs”-files:

i. “UserScript.cs”: opened by default after the template has been loaded.
ii. “UserScript.Settings.cs”
6. You can start making a script. There are 2 approaches for generating a script:

a. Record a script by recording manual operations on the device.

Page 14

M-eux Test: Visual Studio User Guide

b. Learn the user interface of the device and program the script yourself.

Both possibilities will be explained in the next chapters.

@) MyTestl 2 - Microsoft Visual Studio (Administrator) - = | 15
File Edit View Refactor Project Build Debug Data Tools M-euxTest Window Help
-l d | %GR 9 -~ LB b Debug ~ Any CPU - | % v
: |8z flde sh D i@ R b ar|EE|S S| QL0 F aE3Ea&BE T
« 3 | Solution Explorer - Seluti., -« 1 X
_ B |3 [F 2
A Userbcript.UserScript - ﬁp,uﬂcc,-.—:.:] - | |=>;l':I [#] | E
10 |1.1.sing System; D Solution 'MyTestl_2' (2 projects;
2 Lusing CbhjectPoolUserScript; - EI E ObjectPool Userseript
- i [~ [« References
40 namespace UserScript - [Objects
s ¢ -« || ObjectPoolID
& public partial class UserScript Script 3 Clg Script.cs

[=T-I]

T

oy n

{

<

I

EI [UserScript PC

- [=d Properties
[#]- [==] References

3.3. Creating a M-eux Test WM ROD script

Start the environment as described in the previous section.
Please note that RoD is only available for Visual Studio 2005 and 2008.

1. Create a new project inside Visual Studio:
File > New - Project...

2. Inthe dialog select the template: Visual C# = "M-eux Test WM ROD”-Sc

Page 15

ript

M-eux Test: Visual Studio User Guide

Mew Project Gl
Project types: Templates: NET Framework 2.0 v]

Visual C# -~ dig SIS VEED 2EIVILE APPIILaLuT i
Windows ? =¥ Console Application
Web 3 EWindows Forms Control Library
Smart Device T My Templates |
Office € "M-eux Test WM ROD"-Script I
Database = 0"M—eux Test"-Script i
Rennrtinn =

A ternplate for a new "M-eux Test"-5cript, including the ObjectPool.

MName: M}rMeuxRODProjecti

Location: -
Solution: lCreate new Sclution vl Create directory for solution

Solution Marne: MyMeuxRODProject

[ok || Ccancel

3. Give the solution a Name and a Location and press OK

4. Specify a unigue name for the script.

"M-eux Test™-Script

MName of the "M-eux Test"-Script:

LserScrip

Note: it is very important to specify a uniqgue name for your script, this will ease both the sharing of
the ObjectPool between other scripts and calling one script from another.

5. Visual Studio 2005 users may get following warning, select “Yes”

Microsoft Visual Studio

' E Adding a reference to a device project may produce unexpected results, Do vou want o continue?
L

[Yes I [4o i

6. A new Solution with 3 projects will appear:

a. ObjectPool: this project will contain all the objects that can be approached for
automation testing, together with their descriptions.

Page 16

M-eux Test: Visual Studio User Guide
b. UserScript PC: represents the actual script which will contain the automation logic.
The project contains only two “.cs”-files:
iii. “UserScript.cs”: opened by default after the template has been loaded.
iv. “UserScript.Settings.cs”

c. UserScript ROD: Right click on this project and choose “Reload Project”.

i - - - - - -—
&2 MyMeuxRODProject - Microsoft Visual Studio (Administratar) i =B S
. e .
File Edit View Project Build Debug Data Toocls Test Window Help
-S| % GaE| - S E | b Debug - Any CPU - | B z

e g B4z ch D iE R s | = 2 OPR3a3aRQ8
ﬂ‘m ~ 3 | Solution Explorer - UserScrip... » & X
- 2 2EEA
D using System: D Solution 'MyMeuxRODProject’ (2 p
Lusing ObjectPoolUserScript; |~ B E ObjectPool UserScript

- [==] References
[[Objects
|| ObjectPool.ID

seracript.UserScript A ;0 RunCore() -

Flnamespace UserScript
P 1
public partial class UserScript : Script <l

1 gi@ l;serScript.PC
c

m

<Summarys

J// The a scrint code should be programmed / record i [«a] References
fbe ™ T] SUmmMATYF e e =] Help PC.bt
----- #] UserScript.cs
] UserScript.Settings.cs

protected override woid RunCored

{

// Have Fun
Reload Project

a 1 v
Find Symbol Results - 3 x |
|
& Error List |5 Find Results 1| 2= Find Symbol Results| a| — | -
Il Creating project ‘MyMeuxRODProject’... project creation successful,

7. You can start making a script. There are 2 approaches for generating a script:
a. Record a script by recording manual operations on the device.
b. Learn the userinterface of the device and program the script yourself.

Both possibilities will be explained in the next chapters.

3.4. Recording a Script

1. Create a new script as described earlier.

2. Make sure the device is connected to the Device Manager.

Page 17

M-eux Test: Visual Studio User Guide

€) Device Manager

File Tools

Connected Devices | Connected Testing tools | Network IP address

Name | Leam Gui Model Manufacturer C
HTC_P3470 ' HTC

3. From the “M-eux Test Menu” select : “Start Recording”

| M-EI.I]{TEt| Window Help
Bl | start Recording
. Learn GLI

4. While recording the “Stop Recording” option will be made available.

M-eux Test | Window Help

Bl | Stop Recording
. Learn GUI

5. Place the cursor where recorded statements should be generated, this should be somewhere
inside the RunCore method inside the UserScript class:

|6 MyTest1_2 - Microsoft Visual Studio (Administrator) N p— (= B)
File Edit View Refactor Project Build Debug Data Tools M-euxTest Window Help

(- S el | % Ba |9 -~ & E | b Debug ~ Any CPU - | @ z
d Al iB R ae|EE =2 080383808 ¢

UserScript.cs ' Start Page | « 3 | Soclution Explorer - Soluti., + 1 X
| EE A

[Solution 'MyTestl_2' (2 projects
« ||| 2 §8 ObjectPool UserScript

0[3 UserScript.UserScript - ;° RunCore() A

1 u=sing System;
2 Lusing CbjectPoolUserScript;

; - [«=] References

4 namespace UserScript w- O Objects

sil ¢ ----- | ObjectPoolID
& public partial class UserScript : Script 2 ‘ﬁ Seript.cs

7 { 5 (5 UserScript PC

] = < SUNMAT Y > [[=d] Properties

9 The actual script code should be programmed [[l References
10: i </sumpary> 0 e =] Help PC.bt
114 protected override woid RunCore() ||| i -:g'] UserScript.cs
12 *r e~ e] UserScript.Settings.cs
13 // Have F'
14 }
15 | }
1aib} -

Fl m 1 3

6. Tap on some Gui objects on the connected mobile device. (For example in the file explorer
window)

Page 18

M-eux Test: Visual Studio User Guide

7. Select “Stop Recording” from the “M-eux Test Menu” when finished.

Window Help

£l | Stop Recording
o Learn GUI

The resulting script can look like this:

/// <summary>
/// The actual script code should be programmed / recorded in this method
/// </summary>
protected override void RunCore ()
{
// Have Fun
hTC P3470.file Explorer.aTL 01F66680.sysListView32.Select ("Temp");
hTC P3470.file Explorer.omhoog Menu.Select ("Omhoog") ;
hTC P3470.file Explorer.omhoog Menu.Select ("Menu");
hTC_P3470.file_Explorer.omhoog Menu.mNU.Select ("My Documents");

3.5. Learn GUI

The Device Manager object will be available by default in the ObjectPool. If it is removed somehow, the
device manager object can be learned at all times by the objectPool in Visual Studio. Select “Learn GUI”
from the M-eux Test Menu.

M-eux Test | Window Help

i B Start Recording
o Learn GUI
The cursor will change into a hand and Visual Studio will be minimized.

In order to add the objects of the device, move the hand cursor to the device manager window and click
on the cell ‘Learn GUI’ of the ‘connected devices’ table. The screen on the corresponding device will be
learned and appear inside the ObjectPool of the Visual Studio Solution.

Right clicking will cancel the Learn GUI.

€) Device Manager

File Tools

Connected Devices | Connected Testing tools | Network IP address |

| Name Leam Gui ~ Model ~ Manufacturer (

y [T e, HTC B

Note that the upper toolbar, called MoTaskBar will not be learned in this mode. Only the active

foreground window is learned. Popped-up menus are also not learned in this mode.

Page 19

M-eux Test: Visual Studio User Guide

After clicking, wait until the following message disappears:

Do not interact with your application while its objects are being added to the objectPool.

3.6. Programming a script manually

3.6.1. IntelliSense

For programming, all visual studio tools are at your disposal, a very useful feature will be “intellisense”.
The objects in the objectPool can be easily accessed, and their methods are also available for
Autocompletion.

hTC P3470.file Explorer.omho B I e R P e P e ey
hTIC P3470.file Explorer.omho hTC P3470.file Explorer.omhoog Menu
Dj hTC P3470.file Explorer.omhoog Menu
i 1 RTC P3470.f£i
% GetHashCode - - : .
W GetType # DirectoryDeleteFiles *
== global ¥ DriveFill
i GopherstyleUriParser i W Drivelnfo i
== goto L % EndICSTransition |
‘%> Guid W Equals 3

cod hTC_P3470 ¥ Exists i

%4 HttpStyleUriParser) file_Explorer Obj
= IAppDomainSetup W FileCopy

=0 TAsyncResult - ¥ FileExport

W Filelrmrnnrt

3.6.2. Change the name of a ScriptObject inside the UserScript/ObjectPool
The initial script can look like this:

/// <summary>

/// The actual script code should be programmed / recorded in this method
/// </summary>

protected override void RunCore ()

{

hTC P3470.verkenner.aTL 01F66680.sysListView32.Select ("Temp") ;
hTC_P3470.verkenner.omhoog Menu.Select ("Omhoog") ;
hTC P3470.verkenner.omhoog Menu.Select ("Menu");
hTC_P3470.verkenner.omhoog Menu.mNU.Select ("My Documents") ;
hTC_P3470.verkenner.omhoog Menu.Select ("Omhoog") ;

}

Right click on the name of an object you want to change inside the script and select the Refactor ->
rename option:

Page 20

M-eux Test: Visual Studio User Guide

< SUMmMAary>
The actual =cript code should be programmed / recorded in this method
</ ummary>

protected override wolid RunCore ()

{
hTC P3470.verkenner.aTl 01F66680.sy=slistView32.5elect ("Temp”);
hTC P3470 .verkebnﬂ._nmh.nﬂ.ﬂ_ﬁem:_._ﬁﬂ_ect ("Cmhoog™) »
hTC P3470.verks Refactor b | at# Rename.
hTC P3470.wverke . . =
— Crganize Usings » =
nTC_P3470.verke _ genize =Eng ¥ | Bdract Method...
} uo] | Create Unit Tests.. L | Encapsulate Field...
=, | Insert Snippet... =S¢ | Extract Interface...
=l, | Surround With... {:, Promote Local Variable to Parameter
;8 | Go Te Definition ah | Rermove Parameters..,
Rename M
Mew name:
Location:

ObjectPool. Objects HTC_P3470

Preview reference changes
[] Search in comments

[] Search in strings

Give it the name you want. Press OK. Press Apply. The renaming should be

/17

177/
177/

The actual script

protected

Page 21

{

hTC_P3470.
hTC_P3470.
hTC_P3470.
hTC_P3470.
hTC_P3470.

file Explorer.
file Explorer.
file Explorer.
file Explorer.
file Explorer.

code should Dbe

override

<summary>

programmed / recorded in this method

void

aTL_01F66680.sysListView32.Select ("Temp") ;
.Select ("Omhoog") ;

.Select ("Menu") ;

.mNU. Select ("My

.Select ("Omhoog") ;

omhoog Menu
omhoog Menu
omhoog Menu
omhoog Menu

</summary>
RunCore ()

Documents") ;

M-eux Test: Visual Studio User Guide

3.7. ObjectPool

The ObjectPool-project manages all automation objects that can be used inside the userscript, together
with their descriptions. All the test objects’ classes that can occur in the objectPool have a common
parent-class: “ScriptObject”, and will be referred to as ScriptObjects.

ScriptObjects can get in the object pool:
- By recording
- By learning the Gui

The objects are organized in a tree-structure. Several root-objects can contain child-objects. The
hierarchies of objects represent the hierarchy of the corresponding objects on the device.

Note: the ObjectPool project should always contain the file ObjectPool.ID, never touch this file. The
absence of the file inside the ObjectPool-project will disable recording and learn GUI functionality.

3.7.1. The root ScriptObjects
= -_,E ObjectPool UserScript
+ | References

— = Objects

. ----- Cﬂ DeviceManager.cs
- L] HTC_P3470.cs

. || ObjectPoolID

... o] Script.cs

For each root ScriptObject, there is a corresponding “.cs”-file in the Objects folder. These contain the
class definition of those objects. In the example there are 2 root-objects:

- the DeviceManager
- an object representing a mobile device (HTC_P3470)

To be able to access those root-ScriptObjects in the userscript, a reference to the instances of these
Root-ScriptObjects is provided inside the file “Script.cs”.

Page 22

M-eux Test: Visual Studio User Guide

'Script.cs| UserScript.Settings.cs | DeviceManager.cs | UserScript.cs | UserScript PC | Start Page | > x
% ObjectPoolUserScript.5cript v @ Script() A
é f/ 0 <summary>
Thi=s class gives the end-user's script acces to the object pool i
Do HOT:
- add/remove methods P
- add/remove constructors
— change szignature of class
— change the filename "Script.cs™
- S0 </ summary>
] public abstract class Script @ AbstractScript
i :
] ! <summary> =
' Constructor
/" DO HOT DELETE CR MODIFY THIS CONSTRUCTCOR
= SA </ sunmary-
public Script ()
= : thiszs(new MeuxBeplaySettings())
F i1
= ! <summary>
" Constructor
' DO HOT DELETE THIS CONSTRUCTOR
- FAS </ eummary
public Script (MeuxBeplaySettings meuxBReplaySettings)
= base (meuxBReplaySettings)
{
Register (deviceManager); // vou may delete this line in order to reduce
Register (nTC_PF3470); S/ you may delete this line in order to reduce the
F }
public readonly DeviceManager deviceManager = new DeviceManager (null); |// vo
public readonly HTC P3470 hTC P3470 = new HTC_P3470 (null); S wou may delete
- } i
1| m | 3

A detailed definition of a root-ScriptObject can be found in the corresponding “.cs”-file.
The root-ScriptObjects need to be registered inside the Script class:

< SUmmary

Constructor

DC WOT DELETE THIS CONSTRUCTCR

Fff </summary>

public Script (MeuxBReplavSettings meuxBReplaySettings)
baszse (meuxBeplaySettings)

Register (deviceManager): [/ vou may delete this 131
Register (hTC P3470); // vfu may delete this line i

Page 23

M-eux Test: Visual Studio User Guide

3.7.2. The ScriptObject hierarchy
When opening the “.cs”-file of a root-ScriptObject a hierarchy can be seen:

Jpublic sealed cl@&.-ﬁj : MobileDevice
{

internal HTC P3470 (ScriptCbject parent)
| : baseﬁparent}g

public Verkenner file ex private set; }
= public sealed clas@ Verkenne : MoWindow

{

internal Verkenner (ScriptCkbject parent)
| : base:parent}lzl

public ATL 01F66680 aTL 01F66680 { get; private set; }
3 public sealed clasa:EZ_::"_FEEEE:' : Ig@

{

internal ATL 01F66680(ScriptCbject parent)

kx| : base (parent)

public SyslistView3Z syslistView3d2 { get: private =et; }

public sealed clas@stﬂ:;ewaz : I-In:l;st-’l@
- ¥

public Cmhoog Menu omhoog Menuw { get; private set; }

= puklic sealed clas.l:irr_'z:u:g_lde:;; : HCH_E

{

internal Omhoog Menu (ScriptCbject parent)
| : base:parent}lzl

public MHNT mNUO { get; private set; }
= pukblic sealed clas

{

internal MNU(ScriptCkject parent)

| : base (parent)
- }
- }

To get a better overview, the dropdown box in the upper left corner can be pressed:

Page 24

M-eux Test: Visual Studio User Guide

&%) Meux Script20 - Microsoft Visual Studio (Administrator) "R

File Edit View Project Build Debug Data Tools Test Window Help

-~ - S EH | 4 a9 BEEL | b Debug - An
b a» | €

o —

-~ HTC_P3470.c5 | Script.cs rEta:t Page rUserS::ri.pt.ts]

43 ObjectPool.Objects. HTC_P3470.File_Explorer x| 5" File_Explorer(ScriptObjec
“% ObjectPool.Objects. HTC_P3470

ikt ObjectPool.Objects. HTC_P3470.File_Explorer
“% ObjectPool.Objects.HTC_P3470.File_Explorer. ATL_01F8G80
“% ObjectPool.Objects. HTC_P3470.File_Explorer ATL_01F66680.SysListView32
43 ObjectPool.Objects HTC_P3470.File_Explorer.Omhoog_Menu
“1% ObjectPool.Objects. HTC_P3470.File_Explorer.Omhoeg_MenuMNU

3.7.3. ScriptObject Properties

Each ScriptObject in the ObjectPool will have a predefined set of properties available. Some of these
properties can be used to identify the object. Only the properties that are used for the identification of

an object can be seen in the ObjectPool.

If there are too many identifying properties for an object, the executing-userscript may not be able to

find the object matching all those descriptions.

If there are too few identifying properties, the executing-userscript may find multiple GUI-objects

matching the description properties.

The set of identifying properties are set by default, depending the object class.

To see the properties that are used to identify an object, make sure the whole file is expanded (press the
+ signs on the left of the code file). Use the dropdown box above to jump to the appropriate section in

the file.

In the example, the details of the file_Explorer MoWindow are shown:

internal File Explorer (ScriptObject parent)
: base (parent)

{

PPClassname.Value = @"FEXPLORE";
PPId .Value = @"0";
PPTitle .Value = @"Verkenner";

AddDescriptionProperty (PPClassname)
AddDescriptionProperty (PPId)
AddDescriptionProperty (PPTitle)

’
’

aTL_01F66680
omhoog Menu

new ATL 01F66680 (this);
new Omhoog Menu (this);

}

There are three identifying properties, the Classname, the Id and the Title of the window. To make the
script able to run against multiple languages of devices, the Title property can be removed:

Page 25

M-eux Test: Visual Studio User Guide

internal File Explorer(ScriptObject parent)
: base (parent)

{
PPClassname.Value
PPId .Value

@"FEXPLORE";
@lloll;

AddDescriptionProperty (PPClassname) ;
AddDescriptionProperty (PPId)

aTL 01F66680
omhoog Menu

new ATL 01F66680 (this);
new Omhoog Menu (this);

To add other properties for identification, use the intellisense feature of visual studio. Start Typing “PP”
and Visual Studio will show a list of all available properties for that kind of object:

internal File Explorer (ScriptCbhject parent)
base (parent)

ETFEXPLORE™;

Erow;

PPClas=sname . Value
PPId Walue

eyl

ke omhoog_Menu
“‘B Omhoog_Menu

FPClazsname) ;

FFId):
= out
¥ parent Y
01Fea6e80 (thi=) ;
“=! PPChildCount renera s
P4 hog Menu (this) :
2 PPClassname -
£y PPEnabled Property MoWindow.PPEnabled
i
; ;gippF':'r_Egm“”d 66680 { get; private .
=% PPHeight Eﬁﬁﬁy PO
Vst oy, 0 | | foe0ED] Mo ect
=% PPHwnd il
:72_1; PPId l_l EcriptObject parent)
=% PPIndex
f:;? PPProcessid
e
%:’; PPStyle | = E"ATL:01F&6630™;
=¥ pPTE:{t - . _ r..- = [@mym.

Specifying regular expressions for the property values can be done like this:

PPClassname.Value = @"FEXPLORE";
PPId .Value = @"O0";

PPTitle .Value = @"File Explo.*";
PPTitle.RegExp = true;

AddDescriptionProperty (PPClassname)

AddDescriptionProperty (PPId)
AddDescriptionProperty (PPTitle)

Page 26

M-eux Test: Visual Studio User Guide

3.7.4. Reuse an existing ObjectPool for another Userscript
It can be useful for multiple projects to share their ObjectPool. This can be achieved by remapping the
ObjectPool reference of the visual studio solution to another existing ObjectPool project.

When projects are added to a solution, they are added by reference, no copy is taken.
Example
1. Create a new M-eux Script, or open an existing solution.

[A Selution 'Scriptl’ (2 projects)
2 & ObjectPool Scriptl
<3| References
[Objects
- || ObjectPool.ID
. . o] Scriptes
EI E Scriptl PC
=d| Properties
o [References
. D MewuxSystem
A ObjectDefinitions
<3 ObjectPool Scriptl
L« Systemn
..... =| Help PC.ixt
..... “#] UserScript.cs
..... “#] UserScript.Settings.cs

2. Remove the available ObjectPool-project.

Page 27

M-eux Test: Visual Studio User Guide

Solution "Scriptl’ (2 projects)
P praj

B 5
EU|Id
Rebuild
...... Deploy
5 'IJ SC”F
& (3 Scriptl Clean
- (= Prog Project Dependencies...
- S Refe Project Build Order...
..... A3 |
- Add g
..... W Add Reference...
fe 3 S Add Web Reference...
..... =| Helg i)
_____ S User 5}4’ View Class Diagram
-----] User Set a= StartUp Project
Debug k
& | Cut
Ly | Paste
)(Remowve
Rename

llnlnrad Praiect
3. Note the ObjectPool reference is also removed from the UserScript-project.

[5A Selution 'Scriptl’ (1 project)
- [Scriptl PC
=d| Properties
l_—__| s References
----- A3 MeuxSystem
.. <3 ObjectDefinitions
.. «3 System
----- =] Help PC.bet
----- #] UserScript.cs
-----] UserScript.Settings.cs

4. The removed ObjectPool still exists in the windows file explorer, if the removed ObjectPool-
project is not needed anymore, the folder containing the removed ObjectPool-project can be
deleted from the file system.

5. Add an existing ObjectPool to the solution

Page 28

M-eux Test: Visual Studio Use

r Guide

- M
2l B 6 Build Solution
Rebuild Solution
EI Clean Solution
Batch Build...
Configuration Manager...
) Mew Project... Add i
Existing Project... Set StartUp Projects...
Mew Web Site.., iy | Paste
Existing Web Site... Rename
] | Mew tem.., ﬁ Open Folder in Windows Explorer
2| Existing Item... ‘= | Properties
"4 MNew Solution Folder
Navigate to and select the ObjectPool-project of another script.
&) Add Existing Project [
@Ovl |, « MinScript » ObjectPool » - [43| [Zosken)

‘ Organiseren =

Favoriete koppelings
J Projects

E| Documenten
% Recentelijk g...
%l Recenteloca...
B Bureaublad
M Computer
E Afbeeldingen

B’ Muziek

Meer »

Mappen -

Maam Gewijzigd op Type G
1 bin 13/04/2009 14:43 Bestandsmap
J obj 13/04/2009 14:43 Bestandsmap
1. Objects 13/04/2009 14:34 Bestandsmap
@ ObjectPool MijnScript.csproj 13/04/2009 14:34 Visual C# Project file
< | m | ,
Bestandsnaam: Object Pool MijnScript.ceproj - [AIJ Project Files (~.csproj;” vbm T]
[Openen] [Annulersn]

eeld ~ [Mieuwe map

Page 29

M-eux Test: Visual Studio User Guide

6. Add a reference to the ObjectPool project in the references of the UserScript-project.

[Selution 'Scriptl’ (2 projects)
- 4 ObjectPool MijnScript
: [+5] References
G- CJ Objects
- || ObjectPoclID
- L e8] Script.cs
= [Seriptl PC
[=d| Properties

.0 Me Add Reference...
<3 Obj | Add Service Reference...
b <[Systerfi

..... =] Help PC.bt

-----] UserScript.cs

-----) UserScript.Settings.cs

r@ Add Reference i » ;—._.- @Ig

JMET COM | Projects | Browse | Recent

Project Name Project Directory

ObjectPool Mijn5cript Chtemp\MijnScript\MijnScript\ ObjectP ool

ok || cancel |

Page 30

M-eux Test: Visual Studio User Guide

Microsoft Visual 5tudio Iﬁ

Adding a reference to a device project may produce unexpected results,
l % Do youwantto continue?

Select “Yes”

7. The userscript-project has now a reference to the other ObjectPool. Since all the ObjectPool-
project’s classes are in another namespace then the original ObjectPool-project, the namespace
reference inside userscript.cs has to be changed (Userscript.cs):

using System;

using ObjectPoolScriptl;

namespace Scriptl

{
public partial class Scriptl : Script

{
/// <summary>
/// The actual script code should be programmed / recorded in this method
/// </summary>
protected override void RunCore ()

{
// Have Fun

}

Should become:

using System;

using ObjectPoolMijnScript;

namespace Scriptl

{

public partial class Scriptl : Script
{
/// <summary>
/// The actual script code should be programmed / recorded in this method
/// </summary>
protected override void RunCore ()

{
// Have Fun

}
The name of the new namespace can be found in “Script.cs” in the ObjectPool.

Note: visual studio is excellent for complex solution-, project- and references-management:
- Multiple projects can be added to a solution.
- References can be project references or dll references.

Page 31

M-eux Test: Visual Studio User Guide

The “M-eux Test”-Tool only supports the default setting with only one ObjectPool project inside the
solution, referenced by only one UserScript-project. When maintaining a more complex environment,
only the replay of the script will be possible.

3.8. Saving a script
When the save menu options are used inside the “File”-menu in the menu bar of visual studio, only
individual files can be saved, such as “.cs”-files, “.csproj”-files and “.sIn files”.

When a whole solution needs to be saved to another directory, the only option is to copy the whole
solution folder inside the windows file explorer to another path.

3.9. Replaying a script

This can be achieved using the normal debugging of visual studio. Breakpoints can be used. Press the
green play button inside the visual studio toolbar or go to the debug menu and start debugging. Make
sure the tool isn’t recoding anymore.

NINIEtrator]

1 Data Tools Test Window Help

Windows 3

| Start Debugging F5 [
[= | Start Without Dehuaning Ctrl+F5

The debugging features of visual studio will be at disposal.

Page 32

M-eux Test: Visual Studio User Guide

Meux Script (Debugging) - Microsoft Visual Studio [Administrator)

T ——————— e

File Edit View Project Build Debug Data
e RRg =" N AN AR =i
i |l ¥ B4z s G
~ UserScript.cs

VMware
2 | b [Debug

Tools Test Window Help

<|[any cru

.|| [# Fildmport

oﬁUsarS:ript.UserScnpt - }0 RunCore()

2| E &

Fusing System;
Lusing CbjectPoolUserScript;

I O namespace UserScript

m Solution 'Meux Script’ (2 projects) -
||| & JF ObjectPool UserScript M
=1 | References

i -3 MeuxSystem

ObjectPooll

P3470, verkenner .2TL_01F66

HTC_P3470.Verkenner, ATL_01F6

tView32)

{ - «3 mscorlib
| public partial class UserScript Script -+ ObjectDefinitions
N [= 2 [Objects
N <summary> %‘ DeviceManager.cs
| / The actual script code should be programmed / recorded in this method (‘é] HTC_P3470.cs
N </ summary> - _| ObjectPoolID N
i protected override void RunCore () L) scriptaes 3
: 1 £ (3 UserScript PC |
| // Have Fun [=d| Properties
| hTC P3470.verkenner.aTL 01F66680.sysListView32.5elect ("Temp") [} | References
| o thTC P3470.verkenner.omhoog Menu.Select ("Cmhoog") ;| . 1 MeuxSystem
| hIC_P3470.verkenner.omhoog Menu.Select ("Menu"); -3 ObjectDefinitions
| hTC_P3470.verkenner.omhoog_Menu.mNU.Select ("My Documents™); . -3 ObjectPool

i - =3 System

! . i - 2] Help PCtt
| 2) UserScript.cs]
NN i | 5 -] UserScript Settings.cs %
N ‘J ~ & X|| Object Test Bench ~ X
IW Value Type a

I ﬁ hTC_P3470.verkenner .omhoog_Mer _PE‘A?O.Verkenner.Omhoog_Menu} ObjectPoolUserScript.Ok This window allews you to test classes and methods as you write your
il @ this {UserScript. UserScript} UserScript.UserScript code.
To get started, right click on a class in Class View cr the Class Designer to
create an instance.
] Autos] Locals 5] Watch1 | (i CallSt... [Breakp... (%) Object... [Comm... []lmme... [S] Output
Ready

When a “M-eux Test”-Script is debugged, the application MeuxExecuter.exe is used to run the script (see
chapter Replay a distributed script). These settings can be seen in the project settings window of the

userscript project:

Page 33

M-eux Test: Visual Studio User Guide

UserScript PC|' Start Page | UserScript.cs ~ 9
Application
LConfiguration: | Active (Debug) - Platform: | Active (Any CPU) -
Build
Start Acti
Build Events ant Action
Debug Start project
@ Start external program: C\Program Files\Jamo Solutions\M-eux Test\bin\Ms | ..,
Resources
Start browser with URL:
Services
Start Opti
Settings SR
Cemmand line arguments: i i -
Reference Patth i 9 UserScript.dll UserScript_results.bet
Signing
Working directory:

Use remote machine

Enable Debuggers

Enable unmanaged code debugging

Enable SQL Server debugging

Note: when renaming the script, make sure the “command line arguments”-edit field contains the
assembly name of your script.

3.10. Distribute a script
With Visual Studio you can build your script to a .dll-file (default UserScript.dll). You can make a debug-
build, or a release-build of the UserScript-project. (see Visual Studio’s Documentation)

Inside the bin-folder of the UserScript project “UserScript.dll” accompanied by “ObjectPool.dll” can be
found. These two dll's belong together and can be distributed to others. (the “.dll”-files discussed above
will contain the name specified during the creation of the script.)

Tip: an easy way to navigate directly to the project’s-folder can be found in the right-click menu of the
project in the solution explorer of visual studio.

Page 34

M-eux Test: Visual Studio User Guide

Selution Explorer - UserScript PC -1 X

=3 E S
[54 Selution 'Meux Script' (2 projects)
|_=_| _E ObjectPool UserScript
«3] References
E| | Objects
#] DeviceManager.cs
o] HTC_P3470.cs
- _| ObjectPoolID
] Script.cs

=M licar rint P
- 4| Build
[Rebuild
Clean

Project Dependencies...
Project Build Order...
Add »
Add Reference...
Add Service Reference...
f@ View Class Diagram

Set as StartUp Project

Debug 3
& | Cut
h | Paste
X Remove

Rename

Unload Project

Open Folder in Windows Explorer

L

i-= | Properties

3.11. Replaying a distributed script

1. Make sure a Mobile Device is connected to the M-eux DeviceManager

2. Start “MeuxExecuter” on the pc (start = programs = Jamo Solutions 2 M-eux test)
3. Browse to the appropriate UserScript.dll

4. Select a name and location for the Result file.

5. The script will run against the mobile device. When finished the Result file will be shown.

3.12. MeuxExecuter Commandline Options

1. [ScriptLocation] : optional. When omitted a dialog will prompt for the Scrip location.

2. [ResultLocation] : optional. When omitted a dialog will prompt for the Result location.

Page 35

M-eux Test: Visual Studio User Guide

3. /sr[true] or [false]: optional, Indicates if the results will be shown at the end of the test
execution. The default value is true.

Example

C:\MyScript.dll C:\MyResult.html /sr false

3.13. Batch execution
“Meux Executer” is a command-line tool. To run the MeuxExecuter from the command line, following
line can be entered in the command prompt:

"C:\Program Files\Jamo Solutions\M-eux test\bin\MeuxExecuter.exe" "c:\userscript.dll" "c:\temp\results.htm"

When the <enter>-key is pressed, the script "c:\userscript.dll" gets executed and the results will be put in the
file "c:\temp\results.htm".

When the last argument or both command line arguments are missing, an open/save dialog box is
shown to ask for the missing command line arguments.

An approach for running multiple scripts one after the other is running them from a “.bat”-file.
Example
To run two scripts one after the other you can do it like this:

1. Create a txt file, and put 2 lines in it:
"C:\Program Files\Jamo Solutions\M-eux test\bin\MeuxExecuter.exe" "C:\temp\Meux

Script1\Meux Script1\UserScript\bin\Debug\PC\UserScript.dll" "C:\FirstResult.htm"

"C:\Program Files\Jamo Solutions\M-eux test\bin\MeuxExecuter.exe" "C:\temp\Meux
Script2\Meux Script2\UserScript\bin\Debug\PC\UserScript.dIl" "C:\SecondResult.htm"

(Both lines are too long to fit on one line in this document)
2. Save the file on your disk.
Rename the extension “.txt” to “.bat”
4. Now you can double click the bat-file in order to execute the 2 scripts.

w

3.14. Results of a script, using the ResultManager
Every time a script stops running, a HTML Result file will be generated. To log statements in the
resultfile, each Script contains a reference to a ResultManager object.

3.15. Logging statements

There can be logged 5 kinds of statements:

LogPass, LogFail, LogWarning, LogDone, LogError

Page 36

M-eux Test: Visual Studio User Guide

Example:

// <summary>
// The actual script code should be programmed / recorded in this method
/// </summary>
protected override void RunCore ()
{
ResultManager.LogDone ("This is a logstatement");
ResultManager.LogWarning ("Be carefull!");

}

3.16. GlobalSucces Property

The ResultManager holds a C#-property GlobalSuccess which holds the error status for the whole script.
It indicates whether there already occurred an error or not.

3.17. LogRunStatements Property

The ResultManager also logs each executed Run statement against a ScriptObject. This feature can be
enabled or disabled by setting the LogRunStatements property.

ResultManager.LogRunStatements = false;

It is possible to write your own ResultManager, for more information contact.
support@jamosolutions.com.

3.18. Exceptions

In each managed .Net application, there is a mechanism for reporting errors, failures and other
abnormalities during execution. This mechanism is called “Exceptions”. For example
NullReferenceException and DivideByZeroException. See Microsoft’'s documentation for more
information.

All unhandled Exceptions will cause the script to stop executing immediately. In the result file, the
details of the exception will be visible.

If an exception may not interrupt the further execution of a script, try intercepting the exception by
using “try-catch”-statements inside the userscript code.

3.18.1. MeuxException
All exceptions occurring during the execution of the script and are somehow related to the “M-eux
Test”-product, will manifest as being MeuxExceptions.

The MeuxException class directly inherits from Exception class. There are 4 subclasses of the
MeuxException class:

4. MeuxCommunicationException:
Will be thrown when the script cannot communicate with the "M-eux Test"-DeviceManager

5. MeuxObjectNotFoundException

Page 37

mailto:support@jamosolutions.com

M-eux Test: Visual Studio User Guide

Will be thrown when a ScriptObject cannot be found.
6. MeuxPropertyNotFoundException

Will be thrown when a specified property cannot be found. (getTOProperty and setTOProperty
methods)

7. MeuxRunException
Will be thrown when a specific method on a ScriptObject fails.

When intercepting a MeuxException, the corresponding ScriptObject, and the name of the method that
was being executed, can be retrieved.

Example:

/// <summary>

/// The actual script code should be programmed / recorded in this method

/// </summary>
protected override void RunCore ()
{
bool success = false;
while (! success)
{
try
{
// try selecting the temp folder in the file explorer
hTC P3470.file Explorer.aTL 01F66680.sysListView32.Select ("Temp");
success = true;
}
catch (MeuxSystem.Exceptions.MeuxObjectNotFoundException ee)
{
// log the error
ResultManager.LogError (ee) ;
// launch the file explorer on the mobile device
hTC P3470.AppLaunch ("fexplore", "", "");
}
catch (MeuxSystem.Exceptions.MeuxRunException ee)
{
// log the error
ResultManager.LogError (ee) ;
// select the first button on the menu bar to go up one directory
hTC P3470.file Explorer.omhoog Menu.Select ("#0");
}
}
hTC P3470.file Explorer.Close();

3.19. Run one script from another Script

One way for executing multiple scripts is by executing them in a “.bat”-file.

A more advanced approach is invoking one script from another. Playing around with visual studio
projects and references gives a lot of freedom for achieving such functionality.

What follows is a guideline example of how this can be achieved.

Example

Page 38

M-eux Test: Visual Studio User Guide

This example will create a main script that will invoke two other scripts.
1. Create a new script, name it “Script1”. (File = New Project 2 “M-eux Test”-Script)
2. Build the Solution. (Right-click the solution in the solution explorer = Build Solution)
3. Close the Solution (File = Close Solution).
4. Create a new script, name it “Script2”.
5. Build the Solution.

6. Close the Solution.

4

7. Create a new script, name it “MainScript”.

(5 Selution 'MainScript' (2 projects)
=" =7 MainScript PC
+ =d| Properties
+ [References
..... =| Help PC.tt
-] UserScript.cs
.] UserScript.Settings.cs
= -_,E ObjectPool MainScript
+ < References
+ [Objects
.. || ObjectPoelID
o] Script.cs

8. The other scripts need to be known inside the MainScript, therefore some references need to be
added, before this is done, the solution should be well organized to keep an overview all the
time.

9. Add a new solution folder and name it “Script1”, this is only for keeping the solution more user
friendly.

Page 39

M-eux Test: Visual Studio User Guide

] Solution 'MainScript' (2 projects)

= 5 MainScript PC
[+ [=d Properties

- [-2] References

..... =] Help PC.bt

..... #] UserScript.cs

..... #] UserScript.Settings.cs
I 4# ObjectPool MainScript
[[+=] References

Build Sclution
Rebuild Selution
Deploy Sclution
Clean Sclution
Batch Build...

Configuration Manager...

- 3 Objects Project Dependencies...
""" o qﬂﬁl;ifti““'m Project Build Order...

Mew Project... Add 4
Existing Project... Set StartlUp Projects...
Mew Web Site... 1% | Paste
Existing Web Site... Rename

L2 | Mew Item... [ﬁ' Open Folder in Windows Explorer

| Exsting Item... Properties

1 Mew Solution Folder

10. Add a new solution folder and name it “Script2”.

(5 Solution 'MainScript’ (2 projects)

= [MainScript PC

[+~ [=d Properties

- [=5] References

Help PCtt

.....] UserScript.cs

..... #] UserScript.Settings.cs
= ¥ ObjectPool MainScript
[+ [+=i References

- [Objects

..... | | ObjectPoclID

..... #] Script.cs

11. Add the solution of the first script to the “Scriptl”-solution folder.

Page 40

L

M-eux Test: Visual Studio User Guide

[od Seolution 'MainScript' (2 projects)

Mew Project...
Existing Project...
Mew Web Site...
Existing Web Site...

Mew Itern..,
Existing Item...

Mew Solution Folder

----- o
----- Lok Script] 3 Build
£ (5] MainS Rebuild
- =l Pr
- [ig] Re Add *
..... =| He g Cut
..... ELQ Ug
..... ':,ﬁl Us iz | Paste
B E Objec % | Remove
- 5] Re Renarme il
- O g: Reload Project]
.....) i
..... ,:Ig Sc Unload Project i |
Hide Folder
1| Unhide Folders
Properties

% Add Existing Project

@Ovl L% temp k Scriptl »

Maam

Favoriete koppelings
L Scriptl

| Projects -
. ! Scripﬂ.sln

E| Decumenten
[# Recentelijk g...
75l Recenteloca...
B Bureaublad
(M Computer
E Afbeeldingen

Q‘ Muziek

Meer

T|ﬂ~||29€ksﬂ

Gewijzigd op Type
15/04,/2009 10:53 Bestandsmap
15/04,/2009 10:53 Microsoft Visual 5

Mappen ~

i | P

Bestandsnaam: Script1.sin

- ﬁSolutiun Files (*.=ln)

3

[_Openen | [nmueen |-

|

12. Add the solution of the second script to the “Script2”- solution folder.

Page 41

M-eux Test: Visual Studio User Guide

13. When adding a solution to another solution, all projects inside the solution are added. Projects
are added by reference, there is no copy taken.

(oA Selution 'MainScript’ (6 projects)
o Seriptl

i 42 ObjectPool Scriptl
- (28 Scriptl PC

0 Script2

i 42 ObjectPool Script2
E Scnpt2 PC

= _E MainScript PC

- [=d| Properties

[#- [z References

..... =| Help PCobt

-----] UserScript.cs

..... #] UserScript.Settings.cs
(= -ﬂ-ﬂ ObjectPool MainScript
[+ [-2] References

#- [Objects

..... || ObjectPoclID

..... #] Script.cs

14. Add the Scriptl and Script2 projects as references in the MainScript Project.

. (58 MainScript PC

- [=d| Properties

_____ =] Helg Add Reference...
-----] User Add Service Reference...
b o] Users

=8 E ObjectPool MainScript
[[l References

Multiselect is possible:

Page 42

M-eux Test: Visual Studio User Guide

ﬁ Add Reference

MET

COM | Projects

Browse | Recent

4

-

Project Name
ObjectPool MainScript
ObjectPool Scriptl
ObjectPool Script2

Scriptl PC
Script?2 PC

Project Directory

ChtempiMainScriptiMainScriptiObjectPool

Chtemp\Scriptl\Scriptl\ObjectPool
Chtemp\Script\Script2\ObjectPool
Chtemp\Scriptl\Scriptl\UserScript
Chtemph\Script\Scnpt2\ UserScript

] |

| ok

Cancel

15. If warnings are shown, click yes.

Page 43

Microsoft Visual Studio

S

Adding a reference to a device project may produce unexpected results,

Do you want to continue?

&

L@

MainScript PC

[[=d Properties
2 [References

<3 MeuxSystem

<3 ObjectDefinitions
<3 ObjectPocl MainScript
<3 ObjectPool Scriptl
<3 ObjectPool Script2
<3 Scriptl PC

<3 Script2 PC

<3 System

2] Help PC.bet

f,ﬂ UserScript.cs

] UserScript.Settings.cs

M-eux Test: Visual Studio User Guide

16. Implement following code in mainscript.cs:

using System;
using ObjectPoolMainScript;

namespace MainScript

{

{

public partial class MainScript

/// <summary>
/// The actual script code should be programmed / recorded in this method
/// </summary>

protected override void RunCore ()

{

// set the resultmanager
Scriptl.Scriptl.Instance.
// run scriptl

Scriptl.Scriptl.Instance.

// set the resultmanager
Script2.Script2.Instance.
// run script2

Script2.Script2.Instance.

17. Build the solution.

Script

for scriptl
ResultManager = ResultManager;

Run () ;

for script2 and run the script
ResultManager = ResultManager;

Run () ;

The MainScript Solution contains 6 projects. No Record and “Learn Gui” are supported for this solution.

Debugging is possible.

The output folder of the mainscript project will contain all script dilI’s and all objectpool dll’s.

Record and “Learn Gui” can still be done in the original solution of Scriptl and the original solution of
Script2. The changes will be automatically reflected in the MainScript.

Page 44

M-eux Test: Visual Studio User Guide

Chapter 4: Advanced Options

4.1. The MolistViewCE object in Windows Mobile Standard Edition

The MolListViewCE object is an object specific for the Windows Mobile Standard platform. The object is
used to put strings or other GUI objects in a one-column layout format. Examples are:

Contact ——————J WO
1 Phone First name:
2 Sounds
3 Profiles Surname:
4 Home Screen
5 Clock & Alarm]
6 Connections Work phone:
8 Remove Programs Mobile phone:
9 Power Management
0 More... Home phone:

On the left is the Settings screen and on the right the screen to add a new contact. Both are structured
by the MolListViewCE object. The MoListViewCE object does represent an object for which Microsoft did
not release a public interface. The object is supported in analog mode. No text, no items or item count
can be retrieved from the object.

One method is supported on the object: the Press method for replaying the press of a key against the
object.

Following script shows the navigation down the list and the selection of an item using the fast key “7”:

/// <summary>

/// The actual script code should be programmed / recorded in this method

/// </summary>

protected override void RunCore ()

{
smartPhone.settings.mS LISTUI CE 1 0.mS VIRTUAL LIST VIEW CE 1 0.Press("VK TDOWN");
smartPhone.settings.mS LISTUI CE 1 0.mS VIRTUAL LIST VIEW CE 1 0.Press("VK TDOWN");
smartPhone.settings.mS_LISTUI_CE_1 0.mS_VIRTUAL LIST VIEW CE_1 0.Press("VK TDOWN") ;
smartPhone.settings.mS LISTUI CE 1 0.mS VIRTUAL LIST VIEW CE 1 0.Press("VK TDOWN");

0 0
smartPhone.settings.mS LISTUI CE 1 0.mS VIRTUAL LIST VIEW CE 1 O.Press("7");

Page 45

M-eux Test: Visual Studio User Guide

When you have a MolistViewCE with other GUI elements than text, then the down or up navigation is
not against the list but against the opened GUI element. Following scripts show the fill in of the fields of
a new contact record:

/// <summary>

/7

/// The actual script code should be programmed / recorded in this method

/// </summary>

protected override void RunCore ()

{
smartPhone.contacts.new Menu.Select ("New") ;
smartPhone.contact.mS_LISTUI CE 1 0.mS VIRTUAL LIST VIEW CE 1 0
smartPhone.contact.mS LISTUI CE 1 0.mS VIRTUAL LIST VIEW CE 1 0.cAPEDIT.Press("VK TDOWN") ;
smartPhone.contact.mS LISTUI CE 1 0.mS VIRTUAL LIST VIEW CE 1 0.cAPEDIT.Set ("Mda");

.CAPEDIT.Set ("Jacques") ;
smartPhone.contact.mS LISTUI CE 1 0.mS VIRTUAL LIST VIEW CE 1 0.cAPEDIT.Press ("VK TDOWN");

smartPhone.contact.mS_LISTUI CE 1 0.mS_VIRTUAL LIST VIEW CE 1 O.edit.Set("016785236");
smartPhone.contact.mS LISTUI CE 1 0.mS VIRTUAL LIST VIEW CE 1 O.edit.Press("VK TDOWN") ;
smartPhone.contact.mS LISTUI CE 1 0.mS VIRTUAL LIST VIEW CE 1 O.edit.Set("047523652");
smartPhone.contact.done Menu.Select ("Done") ;

4.2. Testing .Net Compact Framework Applications

This section explains how .Net Compact Framework Applications can be tested in an extended way. The
GUI controls of a .Net application can be recognized by the standard functionality of M-eux Test. The
product M-eux Test provides however extended support for the .Net controls. This section and its sub
sections describe how this extended support can be activated and the functionality provided in this
extended support.

Both the .Net Compact Framework 2.0 and 3.5 are supported.

4.2.1. Automatic activation of the .Net Compact Framework Extended support.
The automatic activation o the extended support can be used for .Net Framework applications 1.0, 2.0
and 3.5. The extended support is however not activated by default on the device.

4.2.2. How to active the automatic .Net extended support?

You have to open the ‘M-eux Control Panel’ applications. If this application shows that the agent is
running, then you have to stop the agent. You can stop the agent by selecting the menu ‘Menu’ on the
menu bar, sub menu agent and from this sub menu the entry labeled ‘Stop’.

Then you activate on the device the automatic .Net extended support by selecting the menu ‘Menu’ on
the menu bar, sub menu “.NETCF’' and from this sub menu check the entry labeled ‘Automatic’. The
automatic extended is active on the device, if this menu entry is checked as illustrated in following
figure:

Page 46

M-eux Test: Visual Studio User Guide

Token *
Agent »

v Automatic .

Restart the agent. The enablement is saved in the registry of the device. If you are working in a windows

mobile emulator and you do a hard reset or if you reset the real device to the factory default settings,
then you have to re-install the agent and you have to re-activate the Automatic extended support for
.Net CF applications.

In the .Net CF application under test, the extended support is only enabled when opening the
application from the script. You have to launch the application using the ‘.NetCFApplLaunch’ or
‘.NetCDAppLaunch35’ commands of the MobileDevice test object. If the application is not opened using
this command, then the extended support is not enabled. After launching the application with the
‘.NetCFAppLaunch’ or ‘NetCFAppLaunch35’ command, the tester can start creating his script by
recording, by learning the GUI or by other script actions. Also for replaying the script, the .Net CF
application under test needs to be launched by the .NetCFApplLaunch or .NetCFApplLaunch35
commands.

The command .NetCFApplLaunch35 is used for .Net Compact Framework 3.5 applications. The command
.NetCFAppLaunch is used for .Net Compact Framework 2.0 and 1.0 applications.

When the .Net CF application is launched, the application can be closed in the normal way. After closing
the application, the .NetCFAppStop command needs to be executed. This command will clean up the
.Net CF extended support.

A script should need to look like:

‘Launch the .Net CF application

Id = MobileDevice("X1i").NetCFAppLaunch "MoneyGoesAway.exe", "\Program Files\MoneyGoesAway", ""
‘ Perform different actions

“ after closing the application or to close the application

MobileDevice("WindowsCE").NetCFAppStop Id

Page 47

M-eux Test: Visual Studio User Guide

4.2.3. Enabling extended support in a non-automatic way

In order to use the extended support whereby this is support is not enabled automatically, a minor
source code modification is required. Note that this code change is required for .Net CF 3.5. There are
two approaches:

o “GetForeGroundControl”-approach. In this approach, the application needs also be
launched with the “NetCFAppLaunch” command.

o “Register Form”-approach

In the installation folder on the pc there is a sample available of the .Net CF extended support. This
sample includes both a visual studio solution of a demo application and a Visual Studio script. You must
build the visual studio solution and put the resulting exe file on the device in order to run the script.

GetForeGroundControl-approach

To make a .Net application testable, the developer has to add following method in the code with the
signature:

private static Control GetForegroundControl ()

{

return ..;

}

Each time this method is called, it should return the current foreground Control, mostly this will be a
Form.

When the .Net CF source code modification is made, the extended .Net support is only accessible using
the NetCFAppLaunch method in the scripting environment to startup the application.

NetCFAppLaunch can only be used when the source code modification is implemented.

Example:

hTC P3470.NetCFAppLaunch ("MyNetCFApplication.exe", "", "");

For more information see the reference guide.

Example
When a new .Net compact framework project is generated, following code will be present:

static class Program
{
/// <summary>
/// The main entry point for the application.
/// </summary>
[MTAThread]

Page 48

M-eux Test: Visual Studio User Guide

static void Main()

{

Application.Run(new Form1());

}
}

The Application is made testable as follows:

static class Program

{
/// <summary>
/// The main entry point for the application.
/// </summary>
[MTAThread]
static void Main()

{

form = new Form1();
Application.Run(form);

}
private static Form form;

private static Control GetForegroundControl()

{

return form;

}
}

Note: this example assumes only one form exists in the application, it will always be the foreground
control.

4.2.4. Register Form-approach
In the development environment of the .Net CF Application:

Add a reference to the file “ManagedWrapper.exe”. This file can be found in the lib directory of
the installation folder of M-eux Test.

Page 49

M-eux Test: Visual Studio User Guide

Solution Explorer - Solution 'SmartDeviceProjec.. ~ 1 X

=2 E|E S
[Selution 'SmartDeviceProject3' (1 project)
- -_,Tﬂ SmartDeviceProject

=d| Properties

ijﬂeferences >
3 ManagedWrapper

----- <3 mscorlib

..... A System

----- 43 Systern.Data

----- A Systern.Drawing

----- -3 Systern Windows.Forms
..... {3 System.Xml

- [=] Forml.cs

M- 5] Form2.cs

..... 2 [

- Whenever a form is created, invoke the “Register”-method inside “managedWrapper.exe” and
pass a reference to the form. For example:

public partial class Forml : Form

{
public Forml ()

{
InitializeComponent () ;
ManagedWrapper.Program.Register (this);

}

4.2.5. Overview extended functionality
The extended functionality is explained by using the sample application available in the installation
directory of M-eux Test. This sample application used the GetForeGroundControl adaptation.

Please execute following step in order to use the sample application:
1. Copy the executable to the windows folder (for simplicity) on the device.
2. Set-up the testing environment (device manager / Visual Studio / agent)
3. Generate a new Visual Studio script, and put following statement:

4. hTC P3470.NetCFAppLaunch ("demoNetCF.exe", "", "");

Note: the NetCFApplLaunch is only needed when the “GetForeGroundControl”-Approach is
applied.

5. Start recording. Tap on the button, tap on the calendar object.

Page 50

M-eux Test: Visual Studio User Guide

The recorded script should look like:

“GetForeGroundControl”-Approach:
hTC_P3470.NetCFAppLaunch ("demoNetCF.exe", ne, "y
hTC_P3470.formDemo.buttonDemo. Push () ;

hTC P3470.formDemo.monthCalendarDemo.Tap ("55","82") ;
hTC P3470.formDemo.monthCalendarDemo.Tap ("139","15") ;

“Register Form”-Approach:
hTC P3470.formDemo.buttonDemo.Push () ;

hTC P3470.formDemo.monthCalendarDemo.Tap ("55","82") ;
hTC P3470.formDemo.monthCalendarDemo.Tap ("139","15") ;

In the ObjectPool you can see that all objects are categorized in their MS .Net CF class, and an extra
identification property “Name” is used.

In the script, the tester can call extra functions to cope with controls’ managed properties and methods.
The sample Visual Studio script in the “M-eux test”-installation directory shows how you can call
managed properties and methods by programming the script.

The previous script can be modified like this:

“GetForeGroundControl”-Approach:

hTC P3470.NetCFAppLaunch ("demoNetCF.exe", "",6 "");

hTC P3470.formDemo.buttonDemo.Push () ;
hTC_P3470.formDemo.monthCalendarDemo.SetNetCFROProperty ("TodayDate", "20-11-2008");

hTC P3470.formDemo.monthCalendarDemo.SetNetCFROProperty ("SelectionStart", "8-11-2008");

“Register Form”-Approach:

hTC_P3470.formDemo.buttonDemo.Push () ;
hTC P3470.formDemo.monthCalendarDemo.SetNetCFROProperty ("Todaybate™, "20-11-2008");
hTC_P3470.formDemo.monthCalendarDemo.SetNetCFROProperty ("SelectionStart”, "8-11-2008");

The SetNetCFROProperty sets a specific property of the .Net object implementing the calendar object.
Executing methods
Executing a .Net CF method in the Visual Studio scripting environment can be done as follows:

hTC_ P3470.formDemo.buttonDemo.ExecuteNetCFMethod ("Hide") ;

It is also possible to execute custom methods on custom controls. Click here for more information.
4.2.6. Getting and Setting Properties
An example how a script can take care of .Net CF properties:

//Get the Width Property of a button
string width = hTC_P3470.formDemo.buttonDemo.GetNetCFROProperty ("Width") ;

//Set the Height Property of a button to 50
hTC P3470.formDemo.buttonDemo.SetNetCFROProperty ("Height", "50");

Page 51

M-eux Test: Visual Studio User Guide

The ReferenceGuide explains these methods.
It is also possible to handle custom properties on custom controls. Click here for more information.

4.2.7. Parameters and return values

All parameters of a method in the M-eux-script (or the value of a setter) are passed as a string, if a
compact framework method requires for example an integer parameter, the parameter will be parsed
by the agent on the device.

Only parameter types which can be formed by parsing a string are supported. E.g. Boolean, Int32,
DateTime all have a static method Parse:

Int32:

public static int Parse(string s);
Boolean:

public static bool Parse(string s);
DateTime:

public static DateTime Parse(string s);

If a method on a control in your application requires a parameter with type a customized class, provide
that customized class with a static Parse method like above and you can support that parameter in the
Visual Studio scripts. The same parsing logic applies for setting properties.

When a method returns a value, or a property is retrieved, it will be returned as a string. All .Net
Compact Framework classes support the ToString method which will be called to return values to the M-
eux script in Visual Studio.

Page 52

M-eux Test: Visual Studio User Guide

4.2.8. Supported controls

Button ‘
% ButtonBase CheckBox ‘
4 DataGrid ‘ RadioButton ‘
% DateTimePicker ‘
4 DocumentList ‘
- Label «— Linklabel |
ComboBox ‘
4 ListControl
ListBox H MyCustomListBox ‘4—{ MyCustomListBox2
% ListView ‘
% MonthCalendar ‘
4 PictureBox ‘ Form ‘
% ProgressBar ‘ % ContainerControl UpDownBase Domaintpbown ‘
Control F4 ScrollableControl F UserControl ‘ rumerietpponn ‘
<{ Panel H TabPage ‘
HScrollBar ‘
% Scrollar F VScrollBar ‘
4 Splitter ‘
% StatusBar ‘
4 TabControl ‘
4 TextBoxBase H TextBox
% ToolBar ‘
4 TrackBar ‘
% TreeView ‘

4 WebBrowserBase H WebBrowser

The overview above is a simplified class diagram of all default Controls available in the .Net Compact
Framework. The controls marked in red are customized controls.

All default controls (black) are known by the M-eux objectPool inside Visual Studio, the test object’s
.Net-class will be “MoNetCF” plus the Name of the class in the .Net Compact Framework. For example a
.Net Compact Framework Button will appear in the ObjectPool as being a “MoNetCFButton”.

Page 53

M-eux Test: Visual Studio User Guide

All .Net Compact Framework test objects are extensions of regular Windows MFC test objects; as a
consequence all identification properties and available methods are inherited, i.e. a MoNetCFButton is
an extension of the MoButton test object. A very important identification property that becomes
available for .Net Compact Framework test objects is the Name Property of the corresponding control.

Custom controls are also supported in the M-eux test solution. They will not have their own test object’s
class, but will appear in the ObjectPool as a known parent class.

When an unknown control is used in the application, the m-eux agent on the device will look up the .Net
Compact Framework inheritance tree to find the first default control.

In the class diagram there are two examples of customized controls MyCustomListBox and
MyCustomListBox2. They will both being recognized as a MoNetCFListBox.

However, this will not be a constraint in any way, since all customized methods and all custom defined
properties on these controls are accessible.

Page 54

M-eux Test: Visual Studio User Guide

Chapter 5: Troubleshooting

5.1. The Add-in Meux VS Addin failed to load in VS 2010.

Microsoft Visual Studio X

The Add-in 'M-eux WS Addin' Failed to load or caused an exception.
! would you like o remove this add-in?
If vou choose yes, the file it was loaded from, 'T3My Documentsvisual Studio 20100A8ddinsiMewxysaddinz010, AddIn’, will be renamed.

Error Message: <Unknown Error s
Ertar number: 80131515

If you get an exception like this please select “No”. This error is caused by one of our assemblies not
running with full trust. By adding the following snippet to devenv.exe.config(under "C:\Program Files
(x86)\Microsoft Visual Studio X\Common7\IDE" directory) as specified in the msdn documentation the
problem should be resolved:

<configuration>

<runtime>

<loadFromRemoteSources enabled="true"/>

</runtime>

</configuration>

Page 55

M-eux Test: Visual Studio User Guide

Chapter 6: Using M-eux Test with Unit Test Projects

By default, M-eux Test uses its own test projects and testing framework. If you want, you can write your
mobile tests as unit tests within Visual Studio. This allows you to:

- Use M-eux Test and the unit testing framework from Visual Studio for your mobile tests;
- Automate your test cases in Microsoft Test Manager (MTM) using M-eux Test;

- Use M-eux Test with the Load and Performance Testing features of Visual Studio;

- Integrate with the Team Build features of Team Foundation Server;

6.1. Create your Unit Test Project

To create a new Unit Test project in Visual Studio that is compatible with M-eux Test, you will first need
to create a M-eux Test solution. You can then add a Unit Test project to your solution.

To do so, follow these steps:

1. In Visual Studio, click File, New and choose Project
2. Inthe New Project window, select “M-eux Test” —Script in the project window. Provide a name
for your project and solution and click OK.

P Recent | MET Framework 4.5 -| Sort by: | Default H Search Installed Templates (Ctrl+E) P~

4 |nstalled cx o
@ Silverlight Application Visual C# Type: Visual C#
-
4 Templates Atemplate for a new "M-eux Test"-5cript,

b Visual Basic _pj Split App (XAML) Visual C# including the ObjectPool.
4 Visual C# -
Windows Store é!cg“ Silverlight Class Library Visual C#
Windows
b Web i Class Library (Windows Store apps) Visual C#
I+ Office/SharePoint
Cloud
Reporting
Silverlight
Test
WCF
Windows Phone

Workflow @ “M-eux Test"-Script Visual C&#
b Visual C++

Windows Runtirme Component Visual C#

Unit Test Library (Windows Store apps) Visual C#

WCF Service Application Visual C#

b Visual F#
Uz ™Y Get Windows Azure SDK for NET Visual C#

b Online Click here to go online and find templates.

Name: |Jamo.UnitTests| |

Location: |c\users\frederik\documents\wisual studio 2013\Projects ~|

Solution name: Jamo.UnitTests Create directory for solution
[[] Add to source control

3. Inthe “M-eux Test” =Script dialog box, type the name of the script and click OK. You can accept
the default value.

Page 56

M-eux Test: Visual Studio User Guide

4. In both projects, you can remove the reference to Microsoft.CSharp.

Mame of the "M-ewx Test"-Script:

[Dserserp]

oK

5. Delete the UserScript project.

6. Inthe Solution Explorer window, right-click the solution and choose Add, New Project...

vle,, RunCore() -I

corded in this method

o
‘o
o

New Project..
Existing Project...

New Web Site...

Existing Web Site..

Ctrle Shift-A
Shift+Alt-A

New ltem...
Existing ltem...

New Selution Folder

Ee

&
&

g &

x A

7. Select Unit Test Project, provide a name for the project and click OK

Build Solution

Rebuild Solution

Clean Selution

Run Code Analysis on Selution
Batch Build...

Configuration Manager...

Manage NuGet Packages for Solution...

Enable NuGet Package Restore
New Solution Explorer View
Show on Code Map

Calculate Code Metrics
Project Dependencies...
Project Build Order.

Add

Set StartUp Projects...

Add Solution to Source Control..
Paste

Rename

Open Folder in File Explorer
Properties

Ale+F11

Ctrl+V

Alt+Enter

Solution Explorer
co@le-2udpo

Ctrl+Shift+B

- 0 x

bjectPoolUserScript
Propertics
References
Objects
ObjectPosl.ID
Script.cs

serScript
Properties
References
Help PC.bct
UserScript.cs
UserScript.Settings.cs

plorer

Tests Solution Properties -

Jamo.UnitTests
onfig Debug|Mixed Platforms
ion

clusers\frederik\docur

project UserScript

I Recent

Installed

I Visual Basic

4 Visual C#

Windows Store
Windows
Web
Office/SharePoint
Cloud
Reporting
Silverlight
Test
WCF
Windows Phone
Workflow
b Visual C++
b Visual F#
SQL Server
TypeScript

T =

I JavaScript
Python

P Online

" E‘j Coded Ul Test Project

|.NEF Framework 4.5

~| Sort by: | Defautt

Unit Test Project

&l
&

Web Perfermance and Load Test Project

Visual 02

Visual C#

Visual C#

Click here to go online and find templates.

[Jamo.UnitTests.Tests

Search Installed Templates (Ctrl+E)

Type: Visual CF
A project that contains unit tests,

[cr\users\frederikidocuments\wisual studio 2013\Projects\Jamo.UnitTests

P~

8. Right-click the References node in the Test Project and select Add Reference.

Page 57

M-eux Test: Visual Studio User Guide

Ml Solution Explorer

Qoope-zuanlo

Search Selution Explorer (Ctrl+;)

] Solution ‘Jamo.UnitTests' (3 projects)
4 [T] Jamo.UnitTests.Tests
b K Properties

Add Reference...
Add Service Reference...

B Manage NuGet Packages...
Scopeto This

EP Mew Solution Explarer View

v Seript.cs
I 4 [NeorSerint

9. Check the ObjectPoolUserScript project.

10. Then, click Browse and add a reference to the following files:
1. C:\Program Files (x86)\Jamo Solutions\M-eux Test\bin\MeuxExecuter.exe
2. C:\Program Files (x86)\Jamo Solutions\M-eux Test\bin\MeuxSystem.dll
3. C:\Program Files (x86)\Jamo Solutions\M-eux Test\bin\ObjectDefinitions.dIl
Then, click OK.

P Assemblies Search Browse (Ctrl+E) P~

b Solution Name Path Na
me:
b COM ObjectDefinitions.dll C:\Program Files (x86)\Jamo Solutions\M-eu ObjectDefinitions.dll
MeuxSystem.dll C:\Program Files (x86)\Jamo Solutions\M-eu Created by:
4 Browse MeuxExecuter.exe C:\Program Files (x86)'Jamo Solutions\M-eu

File Version:

11. Right-click the project and click Add, Class...
12. Provide the name TestScript and click OK

Page 58

M-eux Test: Visual Studio User Guide

4 |nstalled

4 Visual C# ltems
Code
Data
General
b Web

Windows Forms

WPF
Reporting
SQL Server
Test
Workflow

b Online

Sortby [Defoult -] i

Class

Interface

Windows Form

User Control

Compenent Class

User Control (WPF)

About Box

ADO.MET Entity Data Model
Application Configuration File

Application Manifest File

Click here to go online and find templates.

Visual C# ltems

Visual C# Items

Visual C# Items

Visual C# ltemns

Visual C# ltems

Visual C# ltems

Visual C# Items

Visual C# Items

Visual C# ltems

Visual C# ltems

[TestScript.cs

-

Search Installed Templates (Ctrl+E) P~

Type: Visual C# [tems
An empty class definition

G

13. At the top of the file, replace the using declarations with the following code:

14.

Page 59

using MeuxExecuter;

using MeuxSystem;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using ObjectPoolUserScript;
using System;

Within the namespace { } declaration, change the class definition to the following:

/// <summary>
/// The <see cref="ScriptExecution"/> class manages the connection between the
testing framework
/// and the M-eux Test Device Manager.
/// </summary>
private ScriptExecution scriptExecution;

/// <summary>
/// Initializes a new instance of the <see cref="TestScript"/> class.
/// </summary>

public TestScript()

{
}

base(new MeuxReplaySettings())

this.MeuxReplaySettings.FindObjectTimeOut = 20000;

/// <summary>
/// Gets or sets the test context which provides
/// information about and functionality for the current test run.
///</summary>
public TestContext TestContext

{

get;
set;

M-eux Test: Visual Studio User Guide

}

/// <summary>

/// Dummy implementation of the base <see cref="Script.RunCore"/> method.
/// </summary>

[Obsolete]

protected override void RunCore()

{
}

/// <summary>

/// Initializes the connection between the Unit Testing Framework and

/// the M-eux Test Device Manager.

/// </summary>

[TestInitialize]

public void InitializeConnection()

{
scriptExecution = new ScriptExecution();
scriptExecution.OpenRunEnvironment();

}

/// <summary>

/// Tears down the connection between the Unit Testing Framework and
/// the M-eux Test Device Manager.

/// </summary>

[TestCleanup]

public void CloseConnection()

{
}

scriptExecution.CloseRunEnvironment();

6.2. Create your unit test class

Unit tests that target the Ul of your mobile applications need to follow a specific structure. In this
section, we guide you through the process of creating a new Unit Test that can automate the Ul of your
mobile applications.

1. Right-click the test project and select Add, Unit Test...

Page 60

M-eux Test: Visual Studio User Guide

SR S
O Newltem... Ctrl+Shift+A
I O Edsting ltem... Shift+Alt+A Solution Explorer T i x
P 0 NewFolder Joo@de-20an £
R —— | search Solution Explorer (Ctrl+;) P~
Service Reference... [Solution 'Jamo UnitTests' (3 projects) =
N Ui & build >.UnitTests. Tests
p roperties
& Load Test.. Rebuild "
erences
& WebPerformance Test... Clean B MeuxExecuter
F Coded Ul Test... View » B MeuxSystem
‘= Ordered Test Analyze » B Microsoft.VisualStudio.Quality
g - B ObjectPoolUserScript
‘L Generic Test S TS b ysterm
%8 Windows Form... B New Solution Explorer View nitTestl.cs
11 UserContral... . show on Code Map ctPoollUserScript
rti
1 Component.. Build Dependencies y |roperties
eferences -
Class... Add N
B Manage NuGet Packages... Team Explorer Class\
T Setas StartUp Project -1 x
Behaty * lstsTests Project Propetties -
Source Control v
4 Cut Ctrl+X
X Remove Del der chusers\frederikidocum)
s
H | za it Rename
1.targets(1635,5): warning MSB3267: The pri Unload Project
s\Jamo.UnitTests\Jamo.UnitTests\UserScripty|
|- € Open Folder in File Explorer
& Properties Alt+Enter

—
2. Add the top of the file, add the following code:

using MeuxSystem;
using MeuxExecuter;
using ObjectPoolUserScript.Objects;

using ObjectPoolUserScript;

3. Change the declaration of your Unit Test class so that it inherits from the TestScript class. For
example:

public class UnitTest2 : TestScript

6.3. Record your first Unit Test
You can now record your first unit test:

1. Make sure:
1. The Device Manager is started
2. At least one device is connected to the Device Manager
3. You have a testable application running on your device.

- T — - YT T T m—

£) Device Manager
File Tools
Connected Devices

Connected Testing tools | Network IP address |

| Leam Gui Model Manufacturer C
| |
__A_“:r 7. TouchZ T3333 |HTC 5

l Name
HTC_Touch2

2. InVisual Studio, click M-eux Test and Connect

Page 61

M-eux Test: Visual Studio User Guide

M-EUXTEST | TEST ARCHITECTURE ANAL

Connect
Start Recording h
Learn GUI

Quality Center I
Quality Center Open Script

Quality Center Save Script

Quality Center Save Script As

3. Place the cursor in the TestMethod1() method in your Unit Test class.
4. In Visual Studio, click M-eux Test and Start Recording.

M-EUXTEST | TEST ARCHITECTURE AN

Connect
I Start Recording h

Learn GUI

Quality Center I
g Quality Center Open Script

Quality Center Save Script

Quality Center Save Script As

5. Execute a couple of actions on your mobile device. They will be recorded as a test script.
6. When you are done, click M-eux Test and Stop Recording.

M-EUX TEST | TEST ARCHITECTURE AN

Stop Recording

| Leam GUI h
Quality Center
Quality Center Open Script 3

Quality Center Save Script
Quality Center Save Script As

7. You may need to repeat steps Error! Reference source not found. through Error! Reference
source not found. from section 6.1.

8. You can add validation logic to your test script by using the standard Visual Studio Unit Testing
features, such as the Assertion class. For more information, see Using the Assert Classes and
Writing Unit Tests for the .NET Framework with the Microsoft Unit Test Framework for Managed
Code on MSDN.

6.4. Converting a Unit Test into a Performance Test

You can use M-eux Test to test the performance of your mobile application in two ways:

- You can measure the response times of the Ul of your mobile applications

- You can automate your application on multiple devices at the same time to generate load
against your back-end servers and measure e.g. how well the servers behave when multiple
users access them concurrently.

To support these test cases, we need to update the base TestScript class or the individual unit test
classes so that they can accommodate for the following:

- Measure execution times and response times on the devices.

- Handle concurrent execution on multiple devices correctly. We implement this by tying each
VUser to a specific device. Each VUser has a unique ID. We suggest that you also name the
devices so that their name ends with a unique ID (e.g. iPhone01, iPhone02,...). This will make it
easy for you to link VUsers to devices.

You can easily convert an existing unit test into a performance test. To do so, take the following steps:

Page 62

http://msdn.microsoft.com/en-us/library/ms182530.aspx
http://msdn.microsoft.com/en-us/library/hh598960.aspx
http://msdn.microsoft.com/en-us/library/hh598960.aspx

M-eux Test: Visual Studio User Guide

1.

Page 63

Add the following field declarations to your TestScript class:

private bool inLoadTest;
private int userId;
private string deviceName;

Add the following method, ExecuteWithTiming, to your test class. It takes an Action delegate
and will measure how long it takes for that code to execute:
private void ExecuteWithTiming(string name, Action method)
{

// Find out if we're running in a load test or unit test. If we're in a load
test, there will be a

// property called AgentID

bool inLoadTest = TestContext.Properties.Contains("AgentId");

if (inLoadTest)

¢ TestContext.BeginTimer(name);
}

method();

if (inLoadTest)

¢ TestContext.EndTimer(name);

}

}

At the end of the InitializeConnection() method, add the following code. You need to replace:
1. android- with the prefixes you use for your devices. For example, if you name your
devices iPhone01, iPhone02 and so on, the prefix would be iPhone.
2. android_e1 with the name of your device in the object repository. For example, if you
recorded your scripts using a device named iPhone, you would replace android_o1 by

iPhone.

inLoadTest = TestContext.Properties.Contains("AgentId");

if(inLoadTest)
{

// Bind to the correct virtual device

LoadTestUserContext loadTestUserContext =
this.TestContext.Properties["$LoadTestUserContext"] as LoadTestUserContext;

userId = loadTestUserContext.Userld + 1; // VS user ids are zero-based

deviceName = string.Format("android-{@:D2}", userId);

TestContext.WritelLine(string.Format("Executing RunCore() for user with ID {0},
using device {1}", userId, deviceName));

Debug.WriteLine(string.Format("Executing RunCore() for user with ID {0}, using
device {1}", userld, deviceName));

this.android_01.SetTOProperty(“name", deviceName);

}

In your Unit Test methods, embed the code for which you want to measure the performance in
the ExecuteWithTiming() method. For example:

M-eux Test: Visual Studio User Guide

// Navigate to the Visibility screen, record timings.
ExecuteWithTiming("Navigate to Visibility Screen",
delegate()
{

apiDemos.Select("Views");

apiDemos.Select("Visibility");
1)

6.5. Adding your unit tests to a performance test project
To create a performance test project and add your unit tests to that project, follow these steps:

1. Right-click the solution, select Add and click New Project.
2. Select the Web Performance and Load Test Project and click OK.

P Recent |.NFF Framewaork 4.5 v| Sort by: |Defau\t v T = Search Installed Templates (Ctrl+E) P~

4 |nstalled c* .
r ; . Type: Visual C#
" a_] Coded Ul Test Project Visual C#

I Visual Basic . A project for Load and Web performance
4 Visual C# Ec Unit Test Project Visual C# tests,
Windows Store
cx
Windows E_'I Web Performance and Load Test Project Visual C&
I Web
b Office/SharePoint
Cloud
Reporting
Silverlight
Test
WCF
Windows Phone
Worldflow
b Visual C++
I Visual F#
SQL Server
TypeScript
I JavaScript
Python
Click here to go online and find templates,

b Online

Name: |Jamo.LoadTest; |

Location: | \users\frederikidocumentsivisual studio 2013\Projects\Jamo.UnitTests ~|

3. Delete the WebTestl web test.
4. Right-click the project and select Add, Load Test

Page 64

M-eux Test: Visual Studio User Guide

— 'O Mewhem.. Co@ e-eRdaE| # -

‘0 Existing ltem... Search Solution Explorer (Ctrl+;) Lo~
%9 New Folder I3 Solution ‘Jamo UnitTests' (4 projects)

Reference... P Solution ltems

A Local testsettings
; o g

5 Ref

ervice Reference. P
A Unit Test.. 2 Build Properties
A Load Test.. Rebuild References
£ Web Performance Test, Clean =8 Microsoft.VisualStudio.QualityTools.We
- =0 System
= i 3
g &= el e UnitTests Tests
= Ordered Test Analyze * | properties
‘L Generic Test Scape to This References
8 Windows Form... B New Solution Explorer View E”'gez'“
e m nitTest2.cs
1 User Control... # Show on Code Map ectPoollserScript
%1 Component... Build Dependencies b | Properties
B Class.. o , | References

Objects

B Manage NuGet Packages... ct Debby.s_iPhone.cs

IF Setas StartUp Project c* DeviceManager.cs

Debug » | ObjectPolID
Script.cs
Source Control " lerscript
cut Ctrl+X
ewdSystem.AbstractScript.RunCore()’ P Ctley
X Remove Del

¥ Rename

Unload Project

¢ Open Folder in File Explorer 5
_) Bipais Al Enter
ol 13 chi3 N

5. Inthe welcome screen of the wizard, click Next
6. Inthe Scenario screen, accept the default values and click Next
7. In the Load Pattern tab, select a Constant Load that matches the number of devices you have

and click Next

I ﬁ Edit load pattern settings for a load test scenario

Welcome Select a load pattern for vour simulated load:

Scenario ®) Constant Load:

User Count:

Test Mix Model
€ fvlode Ogtepload:

Test Mix

Metwork Mix Start user count:

Browser Mix Step duration:

Counter Sets

Step user count: users/step

Run Settings 200~

Maximum user count: - | users

| < Previous || N Einish || Cancel

8. Inthe Test Mix Model screen, accept the default values and click Next
9. Inthe Test Mix, click Add to add your unit test.
10. In all other screens, accept the default values.

Your load test is now ready. To execute the load test, click the Run Load Test button.

Page 65

M-eux Test: Visual Studio User Guide

6.6. Run your tests cases from Microsoft Test Manager

To run your test cases from Microsoft Test Manager, please follow these steps:

1. Link your unit tests to test cases in Microsoft Test Manager by following the instructions from
Automate a test case in Microsoft Test Manager.
2. Your tests will execute on the Microsoft Test Agent. For more information on configuring
Microsoft Test Agents, see Installing and Configuring Test Agents and Test Controllers.
3. Each test agent will attempt to connect to a local device manager. You need to:
1. Install M-eux Test on the same machine as the Test Agent
2. Ensure the Device Manager is running on that machine
3. The devices are connected to the Device Manager
4. The Test Agent is running as Local System

6.7. Run your tests cases from Microsoft Team Build
You can run your test cases during a Team Build. To do so, please follow these steps:

1. Set up your build server. You can use an on-premise or hosted build server. For more
information, see Deploy and configure a build server.
2. The build agent will attempt to connect to a local device manager. You need to:
1. Install M-eux Test on the same machine as the Build Agent
2. Ensure the Device Manager is running on that machine
3. The devices are connected to the Device Manager
4. The Build Agent is running as Local System

Please note that M-eux Test does deploy your application to the device. If you want to build and deploy
your app before you execute your tests, you will need to customize the build workflow within Team
Build.

Page 66

http://msdn.microsoft.com/en-us/library/vstudio/dd380741.aspx
http://msdn.microsoft.com/en-us/library/vstudio/dd648127.aspx
http://msdn.microsoft.com/en-us/library/ms181712.aspx

M-eux Test: Visual Studio User Guide

Chapter 7: Using M-eux Test in any .NET Project

You can call M-eux Test methods from any .Net project. This appendix explains how to call M-eux Test
object and methods from any .Net project which is also called the API approach. The sample used in this
appendix is written in C#. The other .Net languages can also be used.

By using the API, the QA engineer can program his automation step in any .Net project. Recording is not
supported in this configuration and adding objects by learn GUI or by the spy are also not supported.

7.1. Assemblies
Following assemblies needs to be included in order to use our API from your .Net project:

e MeuxExecuter.exe: This assembly contains the object to connect to the device manager and to
disconnect from the device manager program.

e MeuxSystem.dll: This assembly contains the kernel to execute an automation step.

e ObjectDefitions.dll: This assembly contains the definitions of all test objects and their methods
as described in the ‘Function Reference’ of M-eux Test.

The three assemblies are located in the bin directory of the M-eux Test installation folder. Add the three
assemblies as a reference to your Visual Studio project:

4 | References
A3 MeuxExecuter
A3 MeuxSystern
43 ObjectDefinitions
4 Systemn
A Systern.Core
43 Systern.Data
43 Systemn.Data.DataSetExtensions
A3 Systermn.Deployment
A3 Systern.Drawing
43 System.Windows.Forms
A3 System.{ml
43 Systemn.Xml.Ling

HY Dicavicobdanamer o

7.2. Connect the .Net executable to the device manager
The test automation steps can only be executed if a connection to the device manager is made. This is
done by using the ‘ScriptExecution’ class of the MeuxExecuter.exe assembly.

Page 67

M-eux Test: Visual Studio User Guide

The class ‘ScriptExecution’ contains two methods:

Method Description

OpenRunEnvironment() This method will establish the connection to the device manager.
Only after calling this method, test automation methods can be
called. Exceptions will be thrown if OpenRunEnvironment() is
called when the connection is already made, i.e. when the
method is called a second time while the connection of the first
time is not yet closed.

CloseRunEnvionmenty() This method will close the connection to the device manager.
Exceptions will be launched if no connection was open.

Sample code:

ScriptExecution scriptExecution = new ScriptExecution();
scriptExecution.OpenRunEnvironment();
// Execute methods from different APIcript based classes.
scriptExecution.CloseRunEnvironment();

7.3. Programming automation steps

7.3.1. The APIScript class
Automation methods can only be called inside classes that are derived from the APIScript class. The API
Script class is defined in the MeuxSystem assembly.

Sample code:

using MeuxSystem;

namespace TestDirectAPIAccess

{

class testCasel : APIScript

{
public testCasel() : base()
{
}

public void executel()

{
}

Page 68

M-eux Test: Visual Studio User Guide

7.3.2. Automation methods
The automation methods are called on instances of classes defined in the ObjectDefinitions assembly.

7.3.3. Object Pool

One way to access these classes is to create your own object pool. This is done by creating classes
derived from the objectDefintions classes. The main class is either the DeviceManager class to access
the information in the device manager program or the MobileDevice class to connect and execute
commands against the Ul displayed on a connected device.

In order to access the device manager, create a class called DeviceManager which is a subclass of the
ObjectDefinitons.DeviceManager class and specify descriptive attribute name.

Sample Code:

using MeuxSystem;

namespace TestDirectAPIAccess

{
public sealed class DeviceManager : ObjectDefinitions.DeviceManager
{
internal DeviceManager(ScriptObject parent)
: base(parent)
{
PPName.Value = "DeviceManager";
AddDescriptionProperty(PPName);
}
}
}

In order to access the Ul on the device, specify the device, the descriptive attributes of the window and
the Ul object.

Sample Code:

using MeuxSystem;

namespace TestDirectAPIAccess

{

public sealed class Jamo_iphone_5 : ObjectDefinitions.MobileDevice

{

internal Jamo_iphone_5(ScriptObject parent)

: base(parent)
¢ PPName.Value = "iphone";
AddDescriptionProperty(PPName);
ios_UICatalogb = new Ios UICatalog6(this);
¥

Page 69

M-eux Test: Visual Studio User Guide

public readonly Tos UICatalog6 ios_UICatalog6;
public sealed class Ios_UICatalog6t : ObjectDefinitions.iosWindow
{
internal Ios_UICatalog6(ScriptObject parent)
: base(parent)
{
PPApplication .Value = "UICatalog6_ 1";
AddDescriptionProperty(PPApplication)
ios_tableView_UICatalog = new Ios tableView UICatalog(this);
}
public readonly Tos_tableView UICatalog ios_tableView_UICatalog;
public sealed class Ios_tableView UICatalog : ObjectDefinitions.iosTableView
{
internal Ios_tableView_UICatalog(ScriptObject parent)
: base(parent)
{
PPClassname .Value = "UITableView";
PPNavigationBarTitle.Value = "UICatalog";
AddDescriptionProperty(PPClassname)
AddDescriptionProperty(PPNavigationBarTitle);
}
}

¥
¥

In order to use the device manager and the device, you have to create an instance and register this
instance. Best practice is to do this in the constructor of you APIScript based object. The instances can
also be a variable inside a method and registration can also be done inside this method.

The following sample illustrates the registration. The executel method contains one automation step.

using MeuxSystem;

namespace TestDirectAPIAccess

{
class testCasel : APIScript
{
public testCasel() : base()
{
Register(deviceManager);
Register(jamo_iphone_5);
}

public readonly DeviceManager deviceManager = new DeviceManager(null);
public readonly Jamo_iphone_5 jamo_iphone_5 new Jamo_iphone_5(null);

public void executel()

{
jamo_iphone_5.ios_UICatalog6.ios_tableView_UICatalog.Select("#0", "#0");

Page 70

M-eux Test: Visual Studio User Guide

}

7.4. Descriptive programming

When applying the object pool mechanism as described in the previous section, the writing out of the
automation step is easy but the creation and maintenance of the object pool is more difficult since you
have to maintain it without the support you have in a normal C# based M-eux Test project. Instead of
applying the object pool, you can also use descriptive programming. By applying descriptive
programming, you define the objects you need in the test script and not in a separate object. You can
make abstraction of the hierarchy of the Ul by using the childObjects method.

The following example shows how to read in an external XML which contains the definition of a mobile
web page, the id of the web element and the action to be executed against the web element.

public void Execute()
{

// Create the proplList to ask for the children of the web page

// We will look for one child with a specific id attribute

ArraylList propList = new ArraylList();

Property idProp = new Property("id", "zipcode");

propList.Add(idProp);

// When looking for the child, we want to look down the full hierarchy of the DOM of
the web page

androidphone.ConfigParamSet("childObjects.recursive”, "true");

// open the XML

XmlDocument xd = new XmlDocument();

xd.Load("C:\\TestFile.xml");

XmlNodelList nodelist = xd.SelectNodes("/UATAutomation/Step"); //get all Step nodes

foreach (XmlNode node in nodelist)

{

String webElementid = node.Attributes.GetNamedItem("id").Value;
String action = node.Attributes.GetNamedItem("action").Value;
String webPageId = node.Attributes.GetNamedItem("PageId").Value;
String actionArg = node.InnerText;

// set the id of the web page
androidphone.avw_BrowserActivity.avw_avwWebView.mo_webPage.SetTOProperty("id",
webPageId);
// check if the page is opened. Use the default timeout for this.
if (androidphone.avw_BrowserActivity.avw_avwWebView.mo_webPage.Exists())
{
// look for the web object
idProp.Value = webElementid;
ResolvedObject[] children =
androidphone.avw_BrowserActivity.avw_avwhWebView.mo_webPage.ChildObjects(propList);
if ((children != null) && (children.Length == 1))
{
try
{
if ((actionArg != null) && (actionArg.Length > 0))
{
String[] args = new String[1];
args[@] = actionArg;

Page 71

M-eux Test: Visual Studio User Guide

children[@].Run(action, args);

}
else
children[@].Run(action, new string[] { });
}
catch (Exception ee)
{
}

Page 72

M-eux Test: Visual Studio User Guide

Chapter 8: Summary

Now you should be able to start with the testing on Windows Phone.

We wish you a good journey with your test adventure using M-eux Test tool. If you are facing any issues
with our tool, or having trouble about making your test scripts for your test cases, you can always
contact us at support@jamosolutions.com.

Page 73

mailto:support@jamosolutions.com

